
Classic McEliece on the ARM Cortex-M4

(ia.cr/2021/492)

Ming-Shing Chen, Tung Chou

Ruhr University Bochum, Germany

Academia Sinica, Taiwan

9 June, 2021

ia.cr/2021/492

Cycle counts on stm32f4-discovery (at 168 MHz)

parameter set level decap. encap. key generation

mceliece348864f 1
2 706 681 582 199

1 430 811 294
mceliece348864 1 2 146 932 033
mceliece460896* 3 6 535 186 1 081 335
mceliece6688128* 5 7 412 111
mceliece8192128* 5 7 481 747

• Our implementation is constant-time.

• We put the public keys in flash, the cycle counts include time to read/write pk from/to flash.

• All optimizations work when streaming is used.

• With a bit more effort, should be able to do key generation for mceliece460896*.

• Should be able to run all operations of all parameter sets on larger M4 boards (e.g., Giant Gecko).

• Encapsulation time is close to that of lattice-based finalists.

• Decapsulation time is 4–7 times as slow but still reasonably efficient.

• Can trade decapsulation speed for key generation speed by omitting control-bit generation.

1

Cycle counts on stm32f4-discovery (at 168 MHz)

parameter set level decap. encap. key generation

mceliece348864f 1
2 706 681 582 199

1 430 811 294
mceliece348864 1 2 146 932 033
mceliece460896* 3 6 535 186 1 081 335
mceliece6688128* 5 7 412 111
mceliece8192128* 5 7 481 747

• Our implementation is constant-time.

• We put the public keys in flash, the cycle counts include time to read/write pk from/to flash.

• All optimizations work when streaming is used.

• With a bit more effort, should be able to do key generation for mceliece460896*.

• Should be able to run all operations of all parameter sets on larger M4 boards (e.g., Giant Gecko).

• Encapsulation time is close to that of lattice-based finalists.

• Decapsulation time is 4–7 times as slow but still reasonably efficient.

• Can trade decapsulation speed for key generation speed by omitting control-bit generation.

1

Cycle counts on stm32f4-discovery (at 168 MHz)

parameter set level decap. encap. key generation

mceliece348864f 1
2 706 681 582 199

1 430 811 294
mceliece348864 1 2 146 932 033
mceliece460896* 3 6 535 186 1 081 335
mceliece6688128* 5 7 412 111
mceliece8192128* 5 7 481 747

• Our implementation is constant-time.

• We put the public keys in flash, the cycle counts include time to read/write pk from/to flash.

• All optimizations work when streaming is used.

• With a bit more effort, should be able to do key generation for mceliece460896*.

• Should be able to run all operations of all parameter sets on larger M4 boards (e.g., Giant Gecko).

• Encapsulation time is close to that of lattice-based finalists.

• Decapsulation time is 4–7 times as slow but still reasonably efficient.

• Can trade decapsulation speed for key generation speed by omitting control-bit generation.

1

Cycle counts on stm32f4-discovery (at 168 MHz)

parameter set level decap. encap. key generation

mceliece348864f 1
2 706 681 582 199

1 430 811 294
mceliece348864 1 2 146 932 033
mceliece460896* 3 6 535 186 1 081 335
mceliece6688128* 5 7 412 111
mceliece8192128* 5 7 481 747

• Our implementation is constant-time.

• We put the public keys in flash, the cycle counts include time to read/write pk from/to flash.

• All optimizations work when streaming is used.

• With a bit more effort, should be able to do key generation for mceliece460896*.

• Should be able to run all operations of all parameter sets on larger M4 boards (e.g., Giant Gecko).

• Encapsulation time is close to that of lattice-based finalists.

• Decapsulation time is 4–7 times as slow but still reasonably efficient.

• Can trade decapsulation speed for key generation speed by omitting control-bit generation.

1

Public key generation: previous implementations

• For non-f parameter sets, the task is to convert H = [M| T] into [I |M−1T].

• The implementations below

• use almost-inplace LUP decompositions (with PM = LU) and

• generate column blocks Ti ’s on demand

to save time and space.

1. Previous AVX/SSE implementations mostly by Chou

• supercop-20200531 and later versions.

• 3rd-round submission package of Classic McEliece.

M
L−1

U
P pki ← (U−1(L−1(PTi)))

2. “Classic McEliece implementation with low memory footprint” by Roth, Karatsiolis and Krämer

M
L

U
P Compute U−1 and L−1, M−1 ← U−1L−1P, pki ← M−1Ti

2

Public key generation: previous implementations

• For non-f parameter sets, the task is to convert H = [M| T] into [I |M−1T].

• The implementations below

• use almost-inplace LUP decompositions (with PM = LU) and

• generate column blocks Ti ’s on demand

to save time and space.

1. Previous AVX/SSE implementations mostly by Chou

• supercop-20200531 and later versions.

• 3rd-round submission package of Classic McEliece.

M
L−1

U
P pki ← (U−1(L−1(PTi)))

2. “Classic McEliece implementation with low memory footprint” by Roth, Karatsiolis and Krämer

M
L

U
P Compute U−1 and L−1, M−1 ← U−1L−1P, pki ← M−1Ti

2

Public key generation: previous implementations

• For non-f parameter sets, the task is to convert H = [M| T] into [I |M−1T].

• The implementations below

• use almost-inplace LUP decompositions (with PM = LU) and

• generate column blocks Ti ’s on demand

to save time and space.

1. Previous AVX/SSE implementations mostly by Chou

• supercop-20200531 and later versions.

• 3rd-round submission package of Classic McEliece.

M
L−1

U
P pki ← (U−1(L−1(PTi)))

2. “Classic McEliece implementation with low memory footprint” by Roth, Karatsiolis and Krämer

M
L

U
P Compute U−1 and L−1, M−1 ← U−1L−1P, pki ← M−1Ti

2

Public key generation: our implementation

• (RKK) M → L,U,P

• (C) Apply P to Ti using a sorting network.

• Represent P−1 as an array of indices p1, . . . , pn−k .

• Sort (p1, row1), . . . , (pn−k , rown−k) based on pi .

• (C) Multiply by L−1 or U−1 without computing the inverse matrices.

L =

 1 0 0
`0 1 0
`1 `2 1

 , L−1 =

 1 0 0
`0 1 0
0 0 1

 1 0 0
0 1 0
`1 0 1

1 0 0
0 1 0
0 `2 1

 .

• (new) Makes use of blocking to optimize multiplications by L−1 and U−1.

• We use Ti ’s with 32/640 columns.

• Our implementation and (C) both support f parameter sets and decapsulation, while (RKK) does not.

3

Public key generation: our implementation

• (RKK) M → L,U,P

• (C) Apply P to Ti using a sorting network.

• Represent P−1 as an array of indices p1, . . . , pn−k .

• Sort (p1, row1), . . . , (pn−k , rown−k) based on pi .

• (C) Multiply by L−1 or U−1 without computing the inverse matrices.

L =

 1 0 0
`0 1 0
`1 `2 1

 , L−1 =

 1 0 0
`0 1 0
0 0 1

 1 0 0
0 1 0
`1 0 1

1 0 0
0 1 0
0 `2 1

 .

• (new) Makes use of blocking to optimize multiplications by L−1 and U−1.

• We use Ti ’s with 32/640 columns.

• Our implementation and (C) both support f parameter sets and decapsulation, while (RKK) does not.

3

Public key generation: our implementation

• (RKK) M → L,U,P

• (C) Apply P to Ti using a sorting network.

• Represent P−1 as an array of indices p1, . . . , pn−k .

• Sort (p1, row1), . . . , (pn−k , rown−k) based on pi .

• (C) Multiply by L−1 or U−1 without computing the inverse matrices.

L =

 1 0 0
`0 1 0
`1 `2 1

 , L−1 =

 1 0 0
`0 1 0
0 0 1

 1 0 0
0 1 0
`1 0 1

1 0 0
0 1 0
0 `2 1

 .

• (new) Makes use of blocking to optimize multiplications by L−1 and U−1.

• We use Ti ’s with 32/640 columns.

• Our implementation and (C) both support f parameter sets and decapsulation, while (RKK) does not.

3

Public key generation: our implementation

• (RKK) M → L,U,P

• (C) Apply P to Ti using a sorting network.

• Represent P−1 as an array of indices p1, . . . , pn−k .

• Sort (p1, row1), . . . , (pn−k , rown−k) based on pi .

• (C) Multiply by L−1 or U−1 without computing the inverse matrices.

L =

 1 0 0
`0 1 0
`1 `2 1

 , L−1 =

 1 0 0
`0 1 0
0 0 1

 1 0 0
0 1 0
`1 0 1

1 0 0
0 1 0
0 `2 1

 .

• (new) Makes use of blocking to optimize multiplications by L−1 and U−1.

• We use Ti ’s with 32/640 columns.

• Our implementation and (C) both support f parameter sets and decapsulation, while (RKK) does not.

3

Public key generation: our implementation

• (RKK) M → L,U,P

• (C) Apply P to Ti using a sorting network.

• Represent P−1 as an array of indices p1, . . . , pn−k .

• Sort (p1, row1), . . . , (pn−k , rown−k) based on pi .

• (C) Multiply by L−1 or U−1 without computing the inverse matrices.

L =

 1 0 0
`0 1 0
`1 `2 1

 , L−1 =

 1 0 0
`0 1 0
0 0 1

 1 0 0
0 1 0
`1 0 1

1 0 0
0 1 0
0 `2 1

 .

• (new) Makes use of blocking to optimize multiplications by L−1 and U−1.

• We use Ti ’s with 32/640 columns.

• Our implementation and (C) both support f parameter sets and decapsulation, while (RKK) does not.

3

Encapsulation

• Generation of the error vector e

• Implementation strategy: generate indices of 1’s and sort the indices to check for repetition.

• Sorting must be constant-time: sorting networks are safe.

• Observation: information of e only lies in the set of indices.

• Actually any comparison-based sorting algorithm can be used: we use quicksort.

• Might be useful for other code-based cryptosystems (e.g., BIKE and HQC).

• Matrix vector product [I | pk] · eT

• Want to reduce the number of memory accesses.

• Divide pk into 4× 96 blocks so that each piece of e can be reused.

 1 1 1 1

1 1 1 1

1 1 1 1




1

1

1

1



4

Encapsulation

• Generation of the error vector e

• Implementation strategy: generate indices of 1’s and sort the indices to check for repetition.

• Sorting must be constant-time: sorting networks are safe.

• Observation: information of e only lies in the set of indices.

• Actually any comparison-based sorting algorithm can be used: we use quicksort.

• Might be useful for other code-based cryptosystems (e.g., BIKE and HQC).

• Matrix vector product [I | pk] · eT

• Want to reduce the number of memory accesses.

• Divide pk into 4× 96 blocks so that each piece of e can be reused.

 1 1 1 1

1 1 1 1

1 1 1 1




1

1

1

1



4

Encapsulation

• Generation of the error vector e

• Implementation strategy: generate indices of 1’s and sort the indices to check for repetition.

• Sorting must be constant-time: sorting networks are safe.

• Observation: information of e only lies in the set of indices.

• Actually any comparison-based sorting algorithm can be used: we use quicksort.

• Might be useful for other code-based cryptosystems (e.g., BIKE and HQC).

• Matrix vector product [I | pk] · eT

• Want to reduce the number of memory accesses.

• Divide pk into 4× 96 blocks so that each piece of e can be reused.

 1 1 1 1

1 1 1 1

1 1 1 1




1

1

1

1


4

https://github.com/pqcryptotw/mceliece-arm-m4

5

