
Classic McEliece:
conservative code-based cryptography

Daniel J. Bernstein1, Tung Chou2, Tanja Lange3,
Ingo von Maurich, Rafael Misoczki4, Ruben Niederhagen5,
Edoardo Persichetti6, Christiane Peters, Peter Schwabe7,

Nicolas Sendrier8, Jakub Szefer9, Wen Wang9

1University of Illinois at Chicago, 2Osaka University,
3Technische Universiteit Eindhoven, 4Intel Corporation, 5Fraunhofer SIT,
6Florida Atlantic University, 7Radboud University, 8Inria, 9Yale University

12 April 2018
First NIST PQC workshop



Key sizes and key-generation speed

mceliece6960119 parameter set:
1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:
1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles to generate a key;
not much optimization effort yet.
All code runs in constant time.

Very fast in hardware (PQCrypto 2018; CHES 2017):
a few million cycles at 231MHz
using 129059 modules, 1126 RAM blocks
on Altera Stratix V FPGA.

Classic McEliece https://classic.mceliece.org/ 2

https://classic.mceliece.org/


Key sizes and key-generation speed

mceliece6960119 parameter set:
1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:
1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles to generate a key;
not much optimization effort yet.
All code runs in constant time.

Very fast in hardware (PQCrypto 2018; CHES 2017):
a few million cycles at 231MHz
using 129059 modules, 1126 RAM blocks
on Altera Stratix V FPGA.

Classic McEliece https://classic.mceliece.org/ 2

https://classic.mceliece.org/


Key sizes and key-generation speed

mceliece6960119 parameter set:
1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:
1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles to generate a key;
not much optimization effort yet.
All code runs in constant time.

Very fast in hardware (PQCrypto 2018; CHES 2017):
a few million cycles at 231MHz
using 129059 modules, 1126 RAM blocks
on Altera Stratix V FPGA.

Classic McEliece https://classic.mceliece.org/ 2

https://classic.mceliece.org/


Short ciphertexts

mceliece6960119 parameter set:
226 bytes for ciphertext.

mceliece8192128 parameter set:
240 bytes for ciphertext.

Constant time software (measured on Haswell, larger parameters):
295932 cycles for enc,
355152 cycles for dec (decoding, hashing, etc.).

Again very fast in hardware:
17140 cycles for decoding.

Can tweak parameters for even smaller ciphertexts, not much
penalty in key size.

Classic McEliece https://classic.mceliece.org/ 3

https://classic.mceliece.org/


Short ciphertexts

mceliece6960119 parameter set:
226 bytes for ciphertext.

mceliece8192128 parameter set:
240 bytes for ciphertext.

Constant time software (measured on Haswell, larger parameters):
295932 cycles for enc,
355152 cycles for dec (decoding, hashing, etc.).

Again very fast in hardware:
17140 cycles for decoding.

Can tweak parameters for even smaller ciphertexts, not much
penalty in key size.

Classic McEliece https://classic.mceliece.org/ 3

https://classic.mceliece.org/


Short ciphertexts

mceliece6960119 parameter set:
226 bytes for ciphertext.

mceliece8192128 parameter set:
240 bytes for ciphertext.

Constant time software (measured on Haswell, larger parameters):
295932 cycles for enc,
355152 cycles for dec (decoding, hashing, etc.).

Again very fast in hardware:
17140 cycles for decoding.

Can tweak parameters for even smaller ciphertexts, not much
penalty in key size.

Classic McEliece https://classic.mceliece.org/ 3

https://classic.mceliece.org/


Short ciphertexts

mceliece6960119 parameter set:
226 bytes for ciphertext.

mceliece8192128 parameter set:
240 bytes for ciphertext.

Constant time software (measured on Haswell, larger parameters):
295932 cycles for enc,
355152 cycles for dec (decoding, hashing, etc.).

Again very fast in hardware:
17140 cycles for decoding.

Can tweak parameters for even smaller ciphertexts, not much
penalty in key size.

Classic McEliece https://classic.mceliece.org/ 3

https://classic.mceliece.org/


One-wayness (OW-CPA)

Fundamental security question:
Given random parity-check matrix H and syndrome s,
can attacker efficiently find e with s = He?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against Prange’s attack.

Here c0 ≈ 0.7418860694.

Classic McEliece https://classic.mceliece.org/ 4

https://classic.mceliece.org/


One-wayness (OW-CPA)

Fundamental security question:
Given random parity-check matrix H and syndrome s,
can attacker efficiently find e with s = He?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against Prange’s attack.

Here c0 ≈ 0.7418860694.

Classic McEliece https://classic.mceliece.org/ 4

https://classic.mceliece.org/


One-wayness (OW-CPA)

Fundamental security question:
Given random parity-check matrix H and syndrome s,
can attacker efficiently find e with s = He?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against Prange’s attack.

Here c0 ≈ 0.7418860694.

Classic McEliece https://classic.mceliece.org/ 4

https://classic.mceliece.org/


40 years and more than 30 analysis papers later

1962 Prange; 1981 Clark–Cain, crediting Omura; 1988 Lee–Brickell; 1988

Leon; 1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman;

1990 van Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell; 1993

Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg; 1994

Canteaut–Chabanne; 1998 Canteaut–Chabaud; 1998 Canteaut–Sendrier;

2008 Bernstein–Lange–Peters; 2009 Bernstein–Lange–Peters–van

Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010

Bernstein–Lange–Peters; 2011 May–Meurer–Thomae; 2012

Becker–Joux–May–Meurer; 2013 Hamdaoui–Sendrier; 2015 May–Ozerov;

2016 Canto Torres–Sendrier; 2017 Kachigar–Tillich (post-quantum);

2017 Both–May; 2018 Both–May; 2018 Kirshanova (post-quantum).

The McEliece system uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all attacks known today.
Same c0 ≈ 0.7418860694.

Replacing λ with 2λ stops all known quantum attacks.

Classic McEliece https://classic.mceliece.org/ 5

https://classic.mceliece.org/


40 years and more than 30 analysis papers later

1962 Prange; 1981 Clark–Cain, crediting Omura; 1988 Lee–Brickell; 1988

Leon; 1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman;

1990 van Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell; 1993

Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg; 1994

Canteaut–Chabanne; 1998 Canteaut–Chabaud; 1998 Canteaut–Sendrier;

2008 Bernstein–Lange–Peters; 2009 Bernstein–Lange–Peters–van

Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010

Bernstein–Lange–Peters; 2011 May–Meurer–Thomae; 2012

Becker–Joux–May–Meurer; 2013 Hamdaoui–Sendrier; 2015 May–Ozerov;

2016 Canto Torres–Sendrier; 2017 Kachigar–Tillich (post-quantum);

2017 Both–May; 2018 Both–May; 2018 Kirshanova (post-quantum).

The McEliece system uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all attacks known today.
Same c0 ≈ 0.7418860694.

Replacing λ with 2λ stops all known quantum attacks.

Classic McEliece https://classic.mceliece.org/ 5

https://classic.mceliece.org/


40 years and more than 30 analysis papers later

1962 Prange; 1981 Clark–Cain, crediting Omura; 1988 Lee–Brickell; 1988

Leon; 1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman;

1990 van Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell; 1993

Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg; 1994

Canteaut–Chabanne; 1998 Canteaut–Chabaud; 1998 Canteaut–Sendrier;

2008 Bernstein–Lange–Peters; 2009 Bernstein–Lange–Peters–van

Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010

Bernstein–Lange–Peters; 2011 May–Meurer–Thomae; 2012

Becker–Joux–May–Meurer; 2013 Hamdaoui–Sendrier; 2015 May–Ozerov;

2016 Canto Torres–Sendrier; 2017 Kachigar–Tillich (post-quantum);

2017 Both–May; 2018 Both–May; 2018 Kirshanova (post-quantum).

The McEliece system uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all attacks known today.
Same c0 ≈ 0.7418860694.

Replacing λ with 2λ stops all known quantum attacks.

Classic McEliece https://classic.mceliece.org/ 5

https://classic.mceliece.org/


Classic McEliece

McEliece’s system prompted huge amount of followup work.

Some work improves efficiency while clearly preserving security:

I Niederreiter’s dual PKE
(use parity check matrix instead of generator matrix);

I many decoding speedups; . . .

Classic McEliece uses all this, with constant-time implementations.

I Write H = (In−k |T ), public key is (n − k)× k matrix T ,
n − k = w log2 q. H constructed from binary Goppa code.

I Encapsulate using e of weight w .

mceliece6960119 parameter set (2008 Bernstein–Lange–Peters):
q = 8192, n = 6960, w = 119.

mceliece8192128 parameter set:
q = 8192, n = 8192, w = 128.

Classic McEliece https://classic.mceliece.org/ 6

https://classic.mceliece.org/


IND-CCA2 conversions

Classic McEliece follows best practices from literature:

1. Session key: feed random e through standard hash function.

2. Ciphertext includes another hash of e (“confirmation”).

3. Dec includes recomputation and verification of ciphertext.

4. KEM never fails: if inversion fails or ciphertext does not match,
return hash of (secret, ciphertext).

Further features of system that simplify attack analysis:

5. Ciphertext is deterministic function of input e: i.e.,
inversion recovers all randomness used to create ciphertexts.

6. There are no inversion failures for legitimate ciphertexts.

Classic McEliece https://classic.mceliece.org/ 7

https://classic.mceliece.org/


IND-CCA2 conversions

Classic McEliece follows best practices from literature:

1. Session key: feed random e through standard hash function.

2. Ciphertext includes another hash of e (“confirmation”).

3. Dec includes recomputation and verification of ciphertext.

4. KEM never fails: if inversion fails or ciphertext does not match,
return hash of (secret, ciphertext).

Further features of system that simplify attack analysis:

5. Ciphertext is deterministic function of input e: i.e.,
inversion recovers all randomness used to create ciphertexts.

6. There are no inversion failures for legitimate ciphertexts.

Classic McEliece https://classic.mceliece.org/ 7

https://classic.mceliece.org/


IND-CCA2 conversions

Classic McEliece follows best practices from literature:

1. Session key: feed random e through standard hash function.

2. Ciphertext includes another hash of e (“confirmation”).

3. Dec includes recomputation and verification of ciphertext.

4. KEM never fails: if inversion fails or ciphertext does not match,
return hash of (secret, ciphertext).

Further features of system that simplify attack analysis:

5. Ciphertext is deterministic function of input e: i.e.,
inversion recovers all randomness used to create ciphertexts.

6. There are no inversion failures for legitimate ciphertexts.

Classic McEliece https://classic.mceliece.org/ 7

https://classic.mceliece.org/


IND-CCA2 conversions

Classic McEliece follows best practices from literature:

1. Session key: feed random e through standard hash function.

2. Ciphertext includes another hash of e (“confirmation”).

3. Dec includes recomputation and verification of ciphertext.

4. KEM never fails: if inversion fails or ciphertext does not match,
return hash of (secret, ciphertext).

Further features of system that simplify attack analysis:

5. Ciphertext is deterministic function of input e: i.e.,
inversion recovers all randomness used to create ciphertexts.

6. There are no inversion failures for legitimate ciphertexts.

Classic McEliece https://classic.mceliece.org/ 7

https://classic.mceliece.org/


IND-CCA2 conversions

Classic McEliece follows best practices from literature:

1. Session key: feed random e through standard hash function.

2. Ciphertext includes another hash of e (“confirmation”).

3. Dec includes recomputation and verification of ciphertext.

4. KEM never fails: if inversion fails or ciphertext does not match,
return hash of (secret, ciphertext).

Further features of system that simplify attack analysis:

5. Ciphertext is deterministic function of input e: i.e.,
inversion recovers all randomness used to create ciphertexts.

6. There are no inversion failures for legitimate ciphertexts.

Classic McEliece https://classic.mceliece.org/ 7

https://classic.mceliece.org/


IND-CCA2 conversions

Classic McEliece follows best practices from literature:

1. Session key: feed random e through standard hash function.

2. Ciphertext includes another hash of e (“confirmation”).

3. Dec includes recomputation and verification of ciphertext.

4. KEM never fails: if inversion fails or ciphertext does not match,
return hash of (secret, ciphertext).

Further features of system that simplify attack analysis:

5. Ciphertext is deterministic function of input e: i.e.,
inversion recovers all randomness used to create ciphertexts.

6. There are no inversion failures for legitimate ciphertexts.

Classic McEliece https://classic.mceliece.org/ 7

https://classic.mceliece.org/


Classic McEliece highlights

I Security asymptotics unchanged by 40 years of cryptanalysis.

I Short ciphertexts.

I Efficient and straightforward conversion of OW-CPA PKE
into IND-CCA2 KEM.

I Constant-time software implementations.

I FPGA implementation of full cryptosystem.

I Open-source (public domain) implementations.

I No patents.

Classic McEliece https://classic.mceliece.org/ 8

https://classic.mceliece.org/

