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Key sizes and key-generation speed

mceliece6960119 parameter set:
1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:
1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles to generate a key;
not much optimization effort yet.
All code runs in constant time.

Very fast in hardware (PQCrypto 2018; CHES 2017):
a few million cycles at 231MHz
using 129059 modules, 1126 RAM blocks
on Altera Stratix V FPGA.
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Short ciphertexts

mceliece6960119 parameter set:
226 bytes for ciphertext.

mceliece8192128 parameter set:
240 bytes for ciphertext.

Constant time software (measured on Haswell, larger parameters):
295932 cycles for enc,
355152 cycles for dec (decoding, hashing, etc.).

Again very fast in hardware:
17140 cycles for decoding.

Can tweak parameters for even smaller ciphertexts, not much
penalty in key size.
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One-wayness (OW-CPA)

Fundamental security question:
Given random parity-check matrix H and syndrome s,
can attacker efficiently find e with s = He?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against Prange’s attack.

Here c0 ≈ 0.7418860694.
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40 years and more than 30 analysis papers later

1962 Prange; 1981 Clark–Cain, crediting Omura; 1988 Lee–Brickell; 1988

Leon; 1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman;

1990 van Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell; 1993

Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg; 1994

Canteaut–Chabanne; 1998 Canteaut–Chabaud; 1998 Canteaut–Sendrier;

2008 Bernstein–Lange–Peters; 2009 Bernstein–Lange–Peters–van

Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010

Bernstein–Lange–Peters; 2011 May–Meurer–Thomae; 2012

Becker–Joux–May–Meurer; 2013 Hamdaoui–Sendrier; 2015 May–Ozerov;

2016 Canto Torres–Sendrier; 2017 Kachigar–Tillich (post-quantum);

2017 Both–May; 2018 Both–May; 2018 Kirshanova (post-quantum).

The McEliece system uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all attacks known today.
Same c0 ≈ 0.7418860694.

Replacing λ with 2λ stops all known quantum attacks.
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Classic McEliece

McEliece’s system prompted huge amount of followup work.

Some work improves efficiency while clearly preserving security:

I Niederreiter’s dual PKE
(use parity check matrix instead of generator matrix);

I many decoding speedups; . . .

Classic McEliece uses all this, with constant-time implementations.

I Write H = (In−k |T ), public key is (n − k)× k matrix T ,
n − k = w log2 q. H constructed from binary Goppa code.

I Encapsulate using e of weight w .

mceliece6960119 parameter set (2008 Bernstein–Lange–Peters):
q = 8192, n = 6960, w = 119.

mceliece8192128 parameter set:
q = 8192, n = 8192, w = 128.
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IND-CCA2 conversions

Classic McEliece follows best practices from literature:

1. Session key: feed random e through standard hash function.

2. Ciphertext includes another hash of e (“confirmation”).

3. Dec includes recomputation and verification of ciphertext.

4. KEM never fails: if inversion fails or ciphertext does not match,
return hash of (secret, ciphertext).

Further features of system that simplify attack analysis:

5. Ciphertext is deterministic function of input e: i.e.,
inversion recovers all randomness used to create ciphertexts.

6. There are no inversion failures for legitimate ciphertexts.
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Classic McEliece highlights

I Security asymptotics unchanged by 40 years of cryptanalysis.

I Short ciphertexts.

I Efficient and straightforward conversion of OW-CPA PKE
into IND-CCA2 KEM.

I Constant-time software implementations.

I FPGA implementation of full cryptosystem.

I Open-source (public domain) implementations.

I No patents.
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