
Classic McEliece:

conservative code-based cryptography:

cryptosystem specification

23 October 2022

Contents

1 Requirements 2

2 Notation 3

3 Parameters 4

4 The one-way function 4

4.1 Matrix reduction . 4

4.2 Matrix generation for Goppa codes . 5

4.3 Encoding subroutine . 7

4.4 Decoding subroutine . 7

5 The Classic McEliece KEM 8

5.1 Irreducible-polynomial generation . 8

5.2 Field-ordering generation . 8

5.3 Key generation . 8

5.4 Fixed-weight-vector generation . 9

5.5 Encapsulation . 10

5.6 Decapsulation . 10

6 Bits and bytes 10

6.1 Choices of symmetric-cryptography parameters 10

6.2 Representation of objects as byte strings . 11

7 Selected parameter sets 14

1

7.1 Parameter set mceliece348864 . 14

7.2 Parameter set mceliece348864f . 14

7.3 Parameter set mceliece460896 . 14

7.4 Parameter set mceliece460896f . 14

7.5 Parameter set mceliece6688128 . 14

7.6 Parameter set mceliece6688128f . 14

7.7 Parameter set mceliece6960119 . 14

7.8 Parameter set mceliece6960119f . 15

7.9 Parameter set mceliece8192128 . 15

7.10 Parameter set mceliece8192128f . 15

2

1 Requirements

This document defines the Classic McEliece KEM. The KEM consists of three mathematical
functions, namely KeyGen, Encap, and Decap, for each of the “selected parameter sets”
listed in Section 7.

The definitions for each selected parameter set are unified into a single definition for a
broader parameter space specified in Section 3. For each parameter set in that parameter
space, subsequent sections of this document define

• exactly which public key and private key are output by KeyGen given random bits;

• exactly which ciphertext and session key are output by Encap given a public key and
random bits; and

• exactly which session key is output by Decap given a ciphertext and a private key.

This document defines each mathematical function F by presenting an algorithm to compute
F . Basic algorithms such as Gaussian elimination are not repeated here, but MatGen,
Encode, Decode, Irreducible, FieldOrdering, SeededKeyGen, FixedWeight,
KeyGen, Encap, and Decap are specified below as numbered lists of steps.

Three of these algorithms, namely FixedWeight, KeyGen, and Encap, are randomized,
generating random bits at specified moments. The set of strings of random bits allowed as
input for the corresponding mathematical functions is defined as the set of strings of random
bits consumed by these algorithms. For example, the KeyGen algorithm reads exactly `
random bits, so the domain of the mathematical function KeyGen is the set of `-bit strings.
Here `, one of the Classic McEliece parameters, is 256 for each of the selected parameter
sets.

To claim compliance with this document, an algorithm must (1) name either KeyGen or
Encap or Decap; (2) identify a parameter set listed in Section 7 (not another parameter set
from Section 3); and (3) compute exactly the corresponding mathematical function defined in
this document for that parameter set. For example, a KeyGen implementation claimed to
comply with this document for the mceliece6960119 parameter set is required to compute
the specified KeyGen function for that parameter set: i.e., the implementation is required to
read exactly ` = 256 bits of randomness, and to produce the same output that the KeyGen
algorithm specified below produces given the same 256-bit string.

Compliance for a tuple of three algorithms, one for each of KeyGen and Encap and Decap,
is defined as compliance for each algorithm, and again must identify a parameter set listed
in Section 7.

Users sometimes place further constraints on algorithms, for example to include various side-
channel countermeasures (which could use their own random bits) or to achieve particular
levels of performance. Such constraints are out of scope for this document. This document
defines the mathematical functions that must be computed by any compliant algorithms;
this document does not constrain how these functions are computed.

3

2 Notation

The list below introduces the notation used in this specification. It is meant as a reference
guide only; for complete definitions of the terms listed, refer to the appropriate text. Some
other symbols are also used occasionally; they are introduced in the text where appropriate.

n The code length (part of the CM parameters)

k The code dimension (part of the CM parameters)

t The guaranteed error-correction capability (part of the CM parameters)

q The size of the field used (part of the CM parameters)

m log2 q (part of the CM parameters)

µ A nonnegative integer (part of the CM parameters)

ν A nonnegative integer (part of the CM parameters)

H A cryptographic hash function (symmetric-cryptography parameter)

` Length of an output of H (symmetric-cryptography parameter)

σ1 A nonnegative integer (symmetric-cryptography parameter)

σ2 A nonnegative integer (symmetric-cryptography parameter)

G A pseudorandom bit generator (symmetric-cryptography parameter)

g A polynomial in Fq[x] (part of the private key)

αi An element of the finite field Fq (part of the private key)

Γ (g, α0, . . . , αn−1) (part of the private key)

s A bit string of length n (part of the private key)

T An mt× k matrix over F2 (the CM public key)

e A bit string of length n and Hamming weight t

C A ciphertext of length mt encapsulating a session key

Column vectors vs. row vectors. Elements of Fn2 , such as codewords and error vectors,
are always viewed as column vectors. This convention avoids all transpositions. Beware that
this differs from a common convention in coding theory, namely to write codewords as row
vectors but to transpose the codewords for applying parity checks.

0-numbering vs. 1-numbering. To simplify comparisons to software in most program-
ming languages, this specification consistently uses indices numbered from 0, including row
indices, column indices, and α indices. Beware that conventions in the mathematical liter-
ature sometimes agree with this but sometimes do not: for example, polynomial exponents
are conventionally numbered from 0, while most vectors not related to polynomial exponents
are conventionally numbered from 1.

4

3 Parameters

The CM parameters are implicit inputs to the CM algorithms defined below. A CM param-
eter set specifies the following:

• A positive integer m. This also defines a parameter q = 2m.

• A positive integer n with n ≤ q.

• A positive integer t ≥ 2 with mt < n. This also defines a parameter k = n−mt.

• A monic irreducible polynomial f(z) ∈ F2[z] of degree m. This defines a representation
F2[z]/f(z) of the field Fq.

• A monic irreducible polynomial F (y) ∈ Fq[y] of degree t. This defines a representation
Fq[y]/F (y) of the field Fqt = F2mt .

• Integers ν ≥ µ ≥ 0 with ν ≤ k + µ. Parameter sets that do not mention these
parameters define them as (0, 0) by default.

• The symmetric-cryptography parameters listed below.

The symmetric-cryptography parameters are the following:

• A positive integer `.

• A cryptographic hash function H that outputs ` bits.

• An integer σ1 ≥ m.

• An integer σ2 ≥ 2m.

• A pseudorandom bit generator G mapping a string of ` bits to a string of n+σ2q+σ1t+`
bits.

4 The one-way function

4.1 Matrix reduction

Given a matrix X, Gaussian elimination computes the unique matrix R in reduced row-
echelon form having the same number of rows as X and the same row space as X. Being in
reduced row-echelon form means that there is a sequence c0 < c1 < · · · < cr−1 such that

• row 0 of R begins with a 1 in column c0, and this is the only nonzero entry in column
c0;

• row 1 of R begins with a 1 in column c1, the only nonzero entry in column c1;

• row 2 of R begins with a 1 in column c2, the only nonzero entry in column c2;

• etc.;

5

• row r − 1 of R begins with a 1 in column cr−1, the only nonzero entry in column cr−1;
and

• all subsequent rows of R are 0.

Note that the rank of R is r.

Systematic form. As a special case, R is in systematic form if

• R has exactly r rows, i.e., there are no zero rows; and

• ci = i for 0 ≤ i < r. (This second condition is equivalent to simply saying cr−1 = r − 1,
except in the degenerate case r = 0.)

In other words, R has the form (Ir | T), where I is an r × r identity matrix. Reducing a
matrix X to systematic form means computing the unique systematic-form matrix having
the same row space as X, if such a matrix exists.

Semi-systematic form. The following generalization of the concept of systematic form
uses two integer parameters µ, ν satisfying ν ≥ µ ≥ 0.

Let R be a rank-r matrix in reduced row-echelon form. Assume that r ≥ µ, and that there
are at least r − µ+ ν columns.

We say that R is in (µ, ν)-semi-systematic form if R has r rows (i.e., no zero rows); ci = i
for 0 ≤ i < r − µ; and ci ≤ i − µ + ν for 0 ≤ i < r. (The ci conditions are equivalent to
simply cr−µ−1 = r − µ− 1 and cr−1 ≤ r − µ+ ν − 1 except in the degenerate case r = µ.)

As a special case, (µ, ν)-semi-systematic form is equivalent to systematic form if µ = ν.
However, if ν > µ then (µ, ν)-semi-systematic form allows more matrices than systematic
form.

This specification gives various definitions first for the simpler case (µ, ν) = (0, 0) and then
for the general case. The list of selected parameter sets provides, for each key size, one
parameter set with (µ, ν) = (0, 0), and one parameter set labeled “f” with (µ, ν) = (32, 64).

4.2 Matrix generation for Goppa codes

The following algorithm MatGen takes as input Γ = (g, α0, α1, . . . , αn−1) where

• g is a monic irreducible polynomial in Fq[x] of degree t and

• α0, α1, . . . , αn−1 are distinct elements of Fq.

The algorithm output MatGen(Γ) is defined first in the simpler case of systematic form,
and then in the general case of semi-systematic form. The output is either ⊥ or of the form
(T, . . .), where T is the CM public key, an mt× k matrix over F2.

6

Systematic form. For (µ, ν) = (0, 0), the algorithm output MatGen(Γ) is either ⊥ or
of the form (T,Γ), where T is an mt× k matrix over F2. Here is the algorithm:

1. Compute the t×n matrix H̃ = {hi,j} over Fq, where hi,j = αij/g(αj) for i = 0, . . . , t−1
and j = 0, . . . , n− 1.

2. Form an mt× n matrix Ĥ over F2 by replacing each entry u0 + u1z + · · ·+ um−1z
m−1

of H̃ with a column of m bits u0, u1, . . . , um−1.

3. Reduce Ĥ to systematic form (Imt | T), where Imt is an mt ×mt identity matrix. If
this fails, return ⊥.

4. Return (T,Γ).

Semi-systematic form. For general µ, ν, the algorithm output MatGen(Γ) is either ⊥
or of the form (T, cmt−µ, . . . , cmt−1,Γ

′), where

• T is an mt× k matrix over F2;

• cmt−µ, . . . , cmt−1 are integers with mt−µ ≤ cmt−µ < cmt−µ+1 < · · · < cmt−1 < mt−µ+ν;

• Γ′ = (g, α′0, α
′
1, . . . , α

′
n−1);

• g is the same as in the input; and

• α′0, α′1, . . . , α′n−1 are distinct elements of Fq.

Here is the algorithm:

1. Compute the t×n matrix H̃ = {hi,j} over Fq, where hi,j = αij/g(αj) for i = 0, . . . , t−1
and j = 0, . . . , n− 1.

2. Form an mt× n matrix Ĥ over F2 by replacing each entry u0 + u1z + · · ·+ um−1z
m−1

of H̃ with a column of m bits u0, u1, . . . , um−1.

3. Reduce Ĥ to (µ, ν)-semi-systematic form, obtaining a matrix H. If this fails, return
⊥. (Now row i has its leading 1 in column ci. By definition of semi-systematic form,
ci = i for 0 ≤ i < mt− µ; and mt− µ ≤ cmt−µ < cmt−µ+1 < · · · < cmt−1 < mt− µ+ ν.
The matrix H is a variable that can change later.)

4. Set (α′0, α
′
1, . . . , α

′
n−1) ← (α0, α1, . . . , αn−1). (Each α′i is a variable that can change

later.)

5. For i = mt−µ, then i = mt−µ+ 1, and so on through i = mt− 1, in this order: swap
column i with column ci in H, while swapping α′i with α′ci . (After the swap, row i has
its leading 1 in column i. The swap does nothing if ci = i.)

6. The matrix H now has systematic form (Imt | T), where Imt is an mt × mt identity
matrix. Return (T, cmt−µ, . . . , cmt−1,Γ

′) where Γ′ = (g, α′0, α
′
1, . . . , α

′
n−1).

In the special case (µ, ν) = (0, 0), the cmt−µ, . . . , cmt−1 portion of the output is empty, and
the i loop is empty, so Γ′ is guaranteed to be the same as Γ. The reduction to (0, 0)-semi-

7

systematic form is exactly reduction to systematic form. The general algorithm definition
thus matches the (0, 0) algorithm definition.

4.3 Encoding subroutine

The following algorithm Encode takes two inputs: a weight-t column vector e ∈ Fn2 ; and
a public key T , i.e., an mt × k matrix over F2. The algorithm output Encode(e, T) is a
vector C ∈ Fmt2 . Here is the algorithm:

1. Define H = (Imt | T).

2. Compute and return C = He ∈ Fmt2 .

4.4 Decoding subroutine

The following algorithm Decode decodes C ∈ Fmt2 to a word e of Hamming weight wt(e) = t
with C = He if such a word exists; otherwise it returns failure.

Formally, Decode takes two inputs: a vector C ∈ Fmt2 ; and Γ′, the last component of
MatGen(Γ) for some Γ such that MatGen(Γ) 6= ⊥. Write T for the first component of
MatGen(Γ). By definition of MatGen,

• T is an mt× k matrix over F2;

• Γ′ has the form (g, α′0, α
′
1, . . . , α

′
n−1);

• g is a monic irreducible polynomial in Fq[x] of degree t; and

• α′0, α′1, . . . , α′n−1 are distinct elements of Fq.

There are two possibilities for Decode(C,Γ′):

• If C = Encode(e, T) then Decode(C,Γ′) = e. In other words, if there exists a weight-
t vector e ∈ Fn2 such that C = He with H = (Imt | T), then Decode(C,Γ′) = e.

• If C does not have the form He for any weight-t vector e ∈ Fn2 , then Decode(C,Γ′) =
⊥.

Here is the algorithm:

1. Extend C to v = (C, 0, . . . , 0) ∈ Fn2 by appending k zeros.

2. Find the unique c ∈ Fn2 such that (1) Hc = 0 and (2) c has Hamming distance ≤t from
v. If there is no such c, return ⊥. (For the fact that c is unique if it exists, and the fact
that c always exists when C is output by Encap, see the separate “guide for security
reviewers” document.)

3. Set e = v + c.

4. If wt(e) = t and C = He, return e. Otherwise return ⊥.

8

5 The Classic McEliece KEM

5.1 Irreducible-polynomial generation

The following algorithm Irreducible takes a string of σ1t input bits d0, d1, . . . , dσ1t−1. It
outputs either ⊥ or a monic irreducible degree-t polynomial g ∈ Fq[x]. Here is the algorithm:

1. Define βj =
∑m−1

i=0 dσ1j+iz
i for each j ∈ {0, 1, . . . , t− 1}. (Within each group of σ1

input bits, this uses only the first m bits. The algorithm ignores the remaining bits.)

2. Define β = β0 + β1y + · · ·+ βt−1y
t−1 ∈ Fq[y]/F (y).

3. Compute the minimal polynomial g of β over Fq. (By definition g is monic and irre-
ducible, and g(β) = 0.)

4. Return g if g has degree t. Otherwise return ⊥.

5.2 Field-ordering generation

The following algorithm FieldOrdering takes a string of σ2q input bits. It outputs either
⊥ or a sequence (α0, α1, . . . , αq−1) of q distinct elements of Fq. Here is the algorithm:

1. Take the first σ2 input bits b0, b1, . . . , bσ2−1 as a σ2-bit integer a0 = b0 + 2b1 + · · · +
2σ2−1bσ2−1, take the next σ2 bits as a σ2-bit integer a1, and so on through aq−1.

2. If a0, a1, . . . , aq−1 are not distinct, return ⊥.

3. Sort the pairs (ai, i) in lexicographic order to obtain pairs (aπ(i), π(i)) where π is a
permutation of {0, 1, . . . , q − 1}.

4. Define

αi =
m−1∑
j=0

π(i)j · zm−1−j

where π(i)j denotes the jth least significant bit of π(i). (Recall that the finite field Fq
is constructed as F2[z]/f(z).)

5. Output (α0, α1, . . . , αq−1).

5.3 Key generation

The following randomized algorithm KeyGen takes no input (beyond the parameters).
It outputs a public key and private key. Here is the algorithm, using a subroutine
SeededKeyGen defined below:

1. Generate a uniform random `-bit string δ. (This is called a seed.)

2. Output SeededKeyGen(δ).

9

The following algorithm SeededKeyGen takes an `-bit input δ. It outputs a public key
and private key. Here is the algorithm:

1. Compute E = G(δ), a string of n+ σ2q + σ1t+ ` bits.

2. Define δ′ as the last ` bits of E.

3. Define s as the first n bits of E.

4. Compute α0, . . . , αq−1 from the next σ2q bits of E by the FieldOrdering algorithm.
If this fails, set δ ← δ′ and restart the algorithm.

5. Compute g from the next σ1t bits of E by the Irreducible algorithm. If this fails,
set δ ← δ′ and restart the algorithm.

6. Define Γ = (g, α0, α1, . . . , αn−1). (Note that αn, . . . , αq−1 are not used in Γ.)

7. Compute (T, cmt−µ, . . . , cmt−1,Γ
′) ← MatGen(Γ). If this fails, set δ ← δ′ and restart

the algorithm.

8. Write Γ′ as (g, α′0, α
′
1, . . . , α

′
n−1).

9. Output T as public key and (δ, c, g, α, s) as private key, where c = (cmt−µ, . . . , cmt−1)
and α = (α′0, . . . , α

′
n−1, αn, . . . , αq−1).

5.4 Fixed-weight-vector generation

The following randomized algorithm FixedWeight takes no input. It outputs a vector
e ∈ Fn2 of weight t. The algorithm uses a precomputed integer τ ≥ t defined below. Here is
the algorithm:

1. Generate σ1τ uniform random bits b0, b1, . . . , bσ1τ−1.

2. Define dj =
∑m−1

i=0 bσ1j+i2
i for each j ∈ {0, 1, . . . , τ − 1}. (Within each group of σ1

random bits, this uses only the first m bits. The algorithm ignores the remaining bits.)

3. Define a0, a1, . . . , at−1 as the first t entries in d0, d1, . . . , dτ−1 in the range
{0, 1, . . . , n− 1}. If there are fewer than t such entries, restart the algorithm.

4. If a0, a1, . . . , at−1 are not all distinct, restart the algorithm.

5. Define e = (e0, e1, . . . , en−1) ∈ Fn2 as the weight-t vector such that eai = 1 for each i.

6. Return e.

The integer τ is defined as t if n = q; as 2t if q/2 ≤ n < q; as 4t if q/4 ≤ n < q/2; etc. All
of the selected parameter sets have q/2 ≤ n ≤ q, so τ ∈ {t, 2t}.

10

5.5 Encapsulation

The following randomized algorithm Encap takes as input a public key T . It outputs a
ciphertext C and a session key K. Here is the algorithm:

1. Use FixedWeight to generate a vector e ∈ Fn2 of weight t.

2. Compute C = Encode(e, T).

3. Compute K = H(1, e, C); see Section 6.2 for H input encodings.

4. Output ciphertext C and session key K.

5.6 Decapsulation

The following algorithm Decap takes as input a ciphertext C and a private key, and outputs
a session key K. Here is the algorithm:

1. Set b← 1.

2. Extract s ∈ Fn2 and Γ′ = (g, α′0, α
′
1, . . . , α

′
n−1) from the private key.

3. Compute e← Decode(C,Γ′). If e = ⊥, set e← s and b← 0.

4. Compute K = H(b, e, C); see Section 6.2 for H input encodings.

5. Output session key K.

6 Bits and bytes

6.1 Choices of symmetric-cryptography parameters

All of the selected parameter sets use the following symmetric-cryptography parameters:

• The integer ` is 256.

• The `-bit string H(x) is defined as the first ` bits of output of SHAKE256(x). Byte
strings here are viewed as bit strings in little-endian form; see Section 6.2. The set of
bytes is defined as {0, 1, . . . , 255}.

• The integer σ1 is 16. (All of the selected parameter sets have m ≤ 16, so σ1 ≥ m.)

• The integer σ2 is 32.

• The (n + σ2q + σ1t + `)-bit string G(δ) is defined as the first n + σ2q + σ1t + ` bits
of output of SHAKE256(64, δ). Here 64, δ means the 33-byte string that begins with
byte 64 and continues with δ.

All H inputs used in Classic McEliece begin with byte 0 or 1 (see Section 6.2), and thus do

11

not overlap the SHAKE256 inputs used in G.

6.2 Representation of objects as byte strings

Vectors over F2. If r is a multiple of 8 then an r-bit vector v = (v0, v1, . . . , vr−1) ∈ Fr2 is
represented as the following sequence of r/8 bytes:

(v0+2v1+4v2+· · ·+128v7, v8+2v9+4v10+· · ·+128v15, . . . , vr−8+2vr−7+4vr−6+· · ·+128vr−1).

If r is not a multiple of 8 then an r-bit vector v = (v0, v1, . . . , vr−1) ∈ Fr2 is zero-padded on
the right to length between r+1 and r+7, whichever is a multiple of 8, and then represented
as above.

By definition, Simply Decoded Classic McEliece ignores padding bits on input, while Nar-
rowly Decoded Classic McEliece rejects inputs (ciphertexts and public keys) where padding
bits are nonzero; rejection means returning ⊥. For some parameter sets (but not all), r is
always a multiple of 8, so there are no padding bits, so Simply Decoded Classic McEliece
and Narrowly Decoded Classic McEliece are identical.

Session keys. A session key K is an element of F`2. It is represented as a d`/8e-byte string.

Ciphertexts. A ciphertext C is an element of Fmt2 . It is represented as a dmt/8e-byte
string.

Hash inputs. There are two types of hash inputs: (1, v, C), and (0, v, C). Here v ∈ Fn2 ,
and C is a ciphertext.

The initial 0 or 1 is represented as a byte. The vector v is represented as the next dn/8e
bytes. The ciphertext is represented as the next dmt/8e bytes. All hash inputs thus begin
with byte 0 or 1, as mentioned earlier.

Public keys. The public key T , which is an mt× k matrix, is represented in a row-major
fashion. Each row of T is represented as a dk/8e-byte string, and the public key is represented
as the mtdk/8e-byte concatenation of these strings.

Field elements. Each element of Fq ∼= F2[z]/f(z) has the form
∑m−1

i=0 ciz
i where ci ∈ F2.

The representation of the field element is the representation of the vector (c0, c1, . . . , cm−1) ∈
Fm2 .

Monic irreducible polynomials. The monic irreducible degree-t polynomial g = g0 +
g1x + · · · + gt−1x

t−1 + xt is represented as tdm/8e bytes, namely the concatenation of the
representations of the field elements g0, g1, . . . , gt−1.

12

Field orderings. The obvious representation of a sequence (α0, . . . , αq−1) of q distinct
elements of Fq would be as a sequence of q field elements. This document instead specifies
the following representation.

An “in-place Beneš network” is a series of 2m − 1 stages of swaps applied to an array of
q = 2m objects (a0, a1, . . . , aq−1). The first stage conditionally swaps a0 and a1, conditionally
swaps a2 and a3, conditionally swaps a4 and a5, etc., as specified by a sequence of q/2 control
bits (1 meaning swap, 0 meaning leave in place). The second stage conditionally swaps a0
and a2, conditionally swaps a1 and a3, conditionally swaps a4 and a6, etc., as specified by the
next q/2 control bits. This continues through the mth stage, which conditionally swaps a0
and aq/2, conditionally swaps a1 and aq/2+1, etc. The (m+1)st stage is just like the (m−1)st
stage (with new control bits), the (m + 2)nd stage is just like the (m − 2)nd stage, and so
on through the (2m− 1)st stage.

Define π as the permutation of {0, 1, . . . , q − 1} such that αi =
∑m−1

j=0 π(i)j · zm−1−j for all

i ∈ {0, 1, . . . , q − 1}. The ordering (α0, . . . , αq−1) is represented as a sequence of (2m−1)2m−1

control bits for an in-place Beneš network for π. This vector is represented as d(2m− 1)2m−4e
bytes as above.

Each permutation has multiple choices of control-bit vectors. This document requires that
a permutation π be converted to specifically the control bits defined by controlbits in
Figure 1. The decapsulation algorithm reading control bits does not check uniqueness.

Column selections. Part of the private key generated by KeyGen is a sequence c =
(cmt−µ, . . . , cmt−1) of µ integers in increasing order between mt− µ and mt− µ+ ν − 1.

This sequence c is represented as a dν/8e-byte string, the little-endian format of the integer

µ−1∑
i=0

2cmt−µ+i−(mt−µ).

However, for (µ, ν) = (0, 0), the sequence c is instead represented as the 8-byte string which
is the little-endian format of 232− 1, i.e., 4 bytes of value 255 followed by 4 bytes of value 0.

Private keys. A private key (δ, c, g, α, s) is represented as the concatenation of five parts:

• The d`/8e-byte string representing δ ∈ F`2.

• The string representing the column selections c. This string has dν/8e bytes, or 8 bytes
if (µ, ν) = (0, 0).

• The tdm/8e-byte string representing the polynomial g.

• The d(2m− 1)2m−4e bytes representing the field ordering α.

• The dn/8e-byte string representing s ∈ Fn2 .

13

def permutation(c):

 m = 1

 while (2*m-1)<<(m-1) < len(c): m += 1

 assert (2*m-1)<<(m-1) == len(c)

 n = 1<<m

 pi = list(range(n))

 for i in range(2*m-1):

 gap = 1<<min(i,2*m-2-i)

 for j in range(n//2):

 if c[i*n//2+j]:

 pos = (j%gap)+2*gap*(j//gap)

 pi[pos],pi[pos+gap] = pi[pos+gap],pi[pos]

 return pi

def composeinv(c,pi):

 return [y for x,y in sorted(zip(pi,c))]

def controlbits(pi):

 n = len(pi)

 m = 1

 while 1<<m < n: m += 1

 assert 1<<m == n

 if m == 1: return [pi[0]]

 p = [pi[x^1] for x in range(n)]

 q = [pi[x]^1 for x in range(n)]

 piinv = composeinv(range(n),pi)

 p,q = composeinv(p,q),composeinv(q,p)

 c = [min(x,p[x]) for x in range(n)]

 p,q = composeinv(p,q),composeinv(q,p)

 for i in range(1,m-1):

 cp,p,q = composeinv(c,q),composeinv(p,q),composeinv(q,p)

 c = [min(c[x],cp[x]) for x in range(n)]

 f = [c[2*j]%2 for j in range(n//2)]

 F = [x^f[x//2] for x in range(n)]

 Fpi = composeinv(F,piinv)

 l = [Fpi[2*k]%2 for k in range(n//2)]

 L = [y^l[y//2] for y in range(n)]

 M = composeinv(Fpi,L)

 subM = [[M[2*j+e]//2 for j in range(n//2)] for e in range(2)]

 subz = map(controlbits,subM)

 z = [s for s0s1 in zip(*subz) for s in s0s1]

 return f+z+l

Figure 1: Python functions to compute the permutation for an in-place Beneš network given
control bits, and to compute control bits given a permutation.

14

7 Selected parameter sets

7.1 Parameter set mceliece348864

KEM with m = 12, n = 3488, t = 64. Field polynomials f(z) = z12 + z3 + 1 and F (y) =
y64 + y3 + y + z.

7.2 Parameter set mceliece348864f

KEM with m = 12, n = 3488, t = 64. Field polynomials f(z) = z12 + z3 + 1 and F (y) =
y64 + y3 + y + z. Semi-systematic parameters (µ, ν) = (32, 64).

7.3 Parameter set mceliece460896

KEM with m = 13, n = 4608, t = 96. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y96 + y10 + y9 + y6 + 1.

7.4 Parameter set mceliece460896f

KEM with m = 13, n = 4608, t = 96. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y96 + y10 + y9 + y6 + 1. Semi-systematic parameters (µ, ν) = (32, 64).

7.5 Parameter set mceliece6688128

KEM with m = 13, n = 6688, t = 128. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y128 + y7 + y2 + y + 1.

7.6 Parameter set mceliece6688128f

KEM with m = 13, n = 6688, t = 128. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y128 + y7 + y2 + y + 1. Semi-systematic parameters (µ, ν) = (32, 64).

7.7 Parameter set mceliece6960119

KEM with m = 13, n = 6960, t = 119. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y119 + y8 + 1.

15

7.8 Parameter set mceliece6960119f

KEM with m = 13, n = 6960, t = 119. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y119 + y8 + 1. Semi-systematic parameters (µ, ν) = (32, 64).

7.9 Parameter set mceliece8192128

KEM with m = 13, n = 8192, t = 128. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y128 + y7 + y2 + y + 1.

7.10 Parameter set mceliece8192128f

KEM with m = 13, n = 8192, t = 128. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y128 + y7 + y2 + y + 1. Semi-systematic parameters (µ, ν) = (32, 64).

16

	Requirements
	Notation
	Parameters
	The one-way function
	Matrix reduction
	Matrix generation for Goppa codes
	Encoding subroutine
	Decoding subroutine

	The Classic McEliece KEM
	Irreducible-polynomial generation
	Field-ordering generation
	Key generation
	Fixed-weight-vector generation
	Encapsulation
	Decapsulation

	Bits and bytes
	Choices of symmetric-cryptography parameters
	Representation of objects as byte strings

	Selected parameter sets
	Parameter set mceliece348864
	Parameter set mceliece348864f
	Parameter set mceliece460896
	Parameter set mceliece460896f
	Parameter set mceliece6688128
	Parameter set mceliece6688128f
	Parameter set mceliece6960119
	Parameter set mceliece6960119f
	Parameter set mceliece8192128
	Parameter set mceliece8192128f

