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1 Overview

This document is aimed at security reviewers who are checking, qualitatively and quantita-
tively, the security provided by Classic McEliece. This document covers (1) known attacks
and (2) what is known about the possibility of further attacks.

The primary focus of this document is IND-CCA2 security. Classic McEliece is designed to
obtain high confidence in long-term IND-CCA2 security from the composition of

• high confidence in the OW-CPA security of the original 1978 McEliece cryptosystem,
including a remarkably stable quantitative security level, and

• high confidence that switching from the original cryptosystem to the Classic McEliece
KEM converts OW-CPA security ≥2λ into IND-CCA2 security ≥2λ−ε for a small ε.

For simplicity, all of the selected KEM parameter sets use 256-bit secrets, even when the
parameters could otherwise reach higher security levels; this limits the range of λ covered
above. It would be easy to adjust the “`” parameter choice to use larger secrets for users
concerned about the possibility of an attacker guessing 256-bit secrets, but this is not a
real-world threat.

Classic McEliece can be viewed as the result of a series of simple transformations applied to
the original cryptosystem. The security analysis in this document is decomposed accordingly:

• Section 3 reviews the OW-CPA security of the original cryptosystem.

• Section 4.1 concludes that generalizing from n = q to n ≤ q is safe, producing at
most a marginal loss of OW-CPA security. (Taking n < q could gain security, but the
possibility of such gains is not logically relevant to the desired conclusion that Classic
McEliece provides IND-CCA2 security at least 2λ−ε.)

• Section 4.2 concludes that transmitting public keys in systematic form is safe.

• Section 4.3 concludes that using syndromes as ciphertexts is safe.

• Section 5.3 concludes that applying a generic CCA transform is safe, providing IND-
CCA2 security if the previous system provides OW-CPA security.

• Section 5.4 concludes that particular improvements applied to the CCA transform are
safe.

• Section 5.5 concludes that particular mechanisms of generating irreducible polynomials,
field orderings, and fixed-weight vectors are safe.

The extent to which IND-CCA2 security has been proven, for the Classic McEliece KEM or
for any other cryptosystem, should not be overstated. In particular, no proofs rule out the
possibility of much faster attacks that break IND-CCA2 by breaking OW-CPA. Confidence
in the OW-CPA security of the McEliece cryptosystem instead comes from how well the
system has survived extensive cryptanalysis.

Section 6 covers various security properties beyond IND-CCA2.
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2 Correctness

As a preliminary matter, the Classic McEliece KEM is correct. This means the following:
for every key pair produced by KeyGen, and for every ciphertext and session key produced
by Encap, the same session key will be produced by Decap as by Encap.

Correctness is often described as a functionality issue. An application encountering a de-
cryption failure has to ask for the data to be retransmitted, so the application has to provide
a two-way communication channel, and there can be problematic slowdowns if failures occur
frequently. More subtly, correctness is a security issue, which is also why correctness is cov-
ered in this document. See, e.g., [42] for an attack exploiting occasional decryption failures
in a lattice-based cryptosystem.

The following subsections give details to support security review for the functions described
in the separate “cryptosystem specification” document using variable names defined there.
Steps mentioned below refer to steps in algorithms stated in that document.

2.1 Goppa codes

Write Γ = (g, α0, α1, . . . , αn−1) for an input to MatGen. Recall that g is a monic irreducible
polynomial in Fq[x] of degree t, and α0, α1, . . . , αn−1 are distinct elements of Fq.

The corresponding “q-ary Goppa code” Γq is the set of vectors c ∈ Fnq such that the polyno-
mial

∑
i ciA/(x− αi) is a multiple of g in Fq[x], where A =

∏
j(x− αj). The corresponding

“binary Goppa code” Γ2 is the set of vectors c ∈ Fn2 such that the polynomial
∑

i ciA/(x−αi)
is a multiple of g in Fq[x]; in other words, Γ2 = Γq ∩ Fn2 .

Any vector in Fn2 can be written in at most one way as c + e where c ∈ Γ2, e ∈ Fn2 , and e
has Hamming weight at most t. In other words, Γ2 has “minimum distance” at least 2t+ 1.
Here are two ways for reviewers to check this fact:

• Reviewers who are also checking that a claimed KEM implementation correctly com-
putes the specified KEM will, in particular, check the proof of a “decoding” algorithm
that always outputs (c, e) given c + e; see, e.g., [7, Section 6]. Uniqueness of (c, e)
follows immediately.

• Reviewers who are merely checking correctness of the specified KEM can rely on shorter
proofs of uniqueness, such as [63, Theorem 4.4.5].

2.2 Parity-check matrices

The matrix H̃ constructed inside MatGen is a “parity-check matrix” for Γq. This means,
for each c ∈ Fnq , that H̃c = 0 if and only if c ∈ Γq. See, e.g., [7, Theorem 7.2]; this theorem is

due to Goppa. This implies that the matrix Ĥ constructed inside MatGen is a parity-check
matrix for Γ2.
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Row reduction converts any parity-check matrix into another parity-check matrix. For
(µ, ν) = (0, 0), if MatGen(Γ) produces a non-failure output (T,Γ) then H = (Imt | T )
is a matrix obtained by row reduction from Ĥ, and thus a parity-check matrix for Γ2.

For general (µ, ν), the following invariant holds inside MatGen: the matrix H is a parity-
check matrix for Γ′2, where Γ′ = (g, α′0, . . . , α

′
n−1). The point is that any column swaps that

MatGen carries out on H are also carried out on (α′0, . . . , α
′
n−1), preserving this invariant.

Consequently, if MatGen(Γ) produces a non-failure output (T, . . . ,Γ′), then H = (Imt | T )
is a parity-check matrix for Γ′2.

2.3 Encoding and decoding

The next step is to check that Decode works as specified. This has two parts. First, any
C of the form He, where e ∈ Fn2 has weight t, will have Decode output e. Second, any C
that does not have the form He will have Decode output ⊥. The logic is as follows.

For the first part, note that the “syndrome” Hv is C, because the first mt positions of v are
multiplied by the identity matrix and the remaining positions are zero. Hence Hv = He.
Define c = v + e; then Hc = 0, so c ∈ Γ′2. This vector c has distance exactly t from v, and
it is the unique element of Γ′2 at distance ≤t from v, since the minimum distance of Γ′2 is at
least 2t+ 1. Hence Step 2 finds c, Step 3 finds e, and Step 4 returns e.

For the second part, if Decode returns e in Step 4 then e has been verified to have weight
t and to have C = He, so if C does not have this form then Decode must return ⊥.

2.4 Encapsulation and decapsulation

The last step is to check that any ciphertext and session key output by Encap produce the
same session key from Decap.

By assumption C = He for some e ∈ Fn2 of weight t. The Decode algorithm will return e
in Step 4, thus b = 1 and K matches the session key computed in encapsulation.

3 OW-CPA security of the original McEliece cryp-

tosystem

The original McEliece cryptosystem encrypts a message a as Ga + e, where the matrix G
is the public key and e is a weight-t vector. The OW-CPA problem for this cryptosystem
is to recover a from (G,Ga + e) when G is chosen as a random McEliece key and a and e
are chosen uniformly at random. This section reviews the literature on attacks against this
problem.
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3.1 Types of attacks

For all parameters of interest, the fastest attacks known against the OW-CPA problem treat
G as a general matrix with no evident structure. Sections 3.2, 3.3, 3.4, and 3.5 review the
performance of algorithms to recover a from (G,Ga+ e) for general matrices G.

There are also much slower “structural attacks” known that try to exploit the secret structure
of G, for example by recovering Goppa-code parameters for G. See Section 3.6.

A common way to formalize the distinction between these two types of attacks is as follows.
Assume that it is difficult to recover a from (G,Ga+e) when G is chosen as a uniform random
matrix and m and e are chosen uniformly at random. An attack that breaks the OW-CPA
problem is then a distinguisher between McEliece’s public key and a uniform random matrix.
In other words, OW-CPA security follows from the extra assumption that it is difficult to
distinguish McEliece’s public key from a uniform random matrix. This is not a two-way
implication—perhaps there are distinguishers even if OW-CPA is secure—but it motivates
studying distinguishers as a minimum bar for structural attacks. If there are no feasible
distinguishers then the only possibility for better OW-CPA attacks is better attacks against
uniform random matrices.

3.2 Prange’s information-set-decoding algorithm

Assume that G is an n×k matrix over F2, that a ∈ Fk2, that e ∈ Fn2 , and that e has weight t.
Pick any set of k positions within the n positions in the corresponding ciphertext C = Ga+e.
This set is error-free, meaning that these positions in e are all 0, with probability exactly(
n−k
t

)
/
(
n
t

)
.

If this set is error-free then these positions in the known vector C = Ga + e are the same
as these positions in the vector Ga. One can then recover a from these positions in Ga by
linear algebra. One can recognize whether this was successful by checking whether C −Ga
has weight t, and try another set otherwise.

A small difficulty here is that the k × k matrix obtained by restricting G to these positions
is not necessarily invertible: i.e., these positions in Ga could leave multiple possibilities for
a. The simplest solution is to require the set of positions to be an “information set”, a
set for which the k × k matrix is invertible, and simply try again if the matrix turns out
not to be invertible. This attack algorithm is from 1962 Prange [56], the simplest form of
“information-set decoding”.

A uniform random k × k matrix has probability (1 − 1/2)(1 − 1/4) · · · (1 − 1/2k) ≈ 0.29
of being invertible. Experiments for large k with McEliece’s public keys, matrices secretly
obtained from Goppa codes, obtain probabilities statistically indistinguishable from this.
In other words, even if distinguishers exist between the public keys and uniform random
matrices, the power of invertibility as a distinguisher is weak enough that one can treat
these situations as equivalent for purposes of analyzing information-set decoding. Similarly,
correlations of events inside Prange’s algorithm (being invertible and being error-free across
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multiple iterations) are shown by experiments to be negligible.

A smaller difficulty is that, for general matrices G, there might be colliding ciphertexts:
another (a′, e′) might have Ga′ + e′ = Ga + e. This event limits the success probability of
any OW-CPA attack, since the attack cannot tell whether the original target was a or a′. As
an extreme case, if G = 0 then an OW-CPA attack cannot succeed with probability above
1/2k. However, colliding ciphertexts cannot occur for McEliece’s public keys (see Section 2),
and are extremely unlikely to occur for a uniform random matrix of the same size.

To summarize, under minor assumptions, each iteration of Prange’s algorithm succeeds with
probability approximately 0.29

(
n−k
t

)
/
(
n
t

)
, and the average number of iterations before success

is approximately
(
n
t

)
/0.29

(
n−k
t

)
.

3.3 Improvements to information-set decoding

McEliece’s cryptosystem prompted many further papers studying algorithms to recover a
from (G,Ga + e) for general matrices G, including [24], [50], [51], [47], [61], [30], [25], [64],
[31], [26], [21], [22], [65], [17], [18], [19], [9], [11], [35], [10], [52], [3], [39], [53], [62], [15], [16],
[28], [34], and [20].

Reducing linear-algebra time has turned out to be an important source of quantitative im-
provements over Prange’s algorithm. For example:

• Instead of guessing that an information set has 0 errors, 1988 Lee–Brickell [50] guess
that it has (e.g.) 2 errors, reusing the costs of linear algebra on G for all

(
k
2

)
choices of

error positions.

• For each a obtained from a particular information set, instead of computing all positions
of C − Ga and checking whether C − Ga has weight t, 1988 Leon [51] first computes
a limited number of positions, requiring those positions to be 0.

• An idea from Omura (see [24, page 175]) is to have each iteration change just one
position from the previous set, amortizing the costs of linear algebra across many
iterations. It is easy to do this in a way that guarantees that each set will be an
information set. One can use Markov chains to analyze the randomness of the number
of errors in the set; see [19, Section III]. It turns out to be better to change somewhat
more positions; see [9].

Further improvements have come from integrating Prange’s algorithm with more sophis-
ticated combinatorial searches for error positions in the information set. For example,
1989 Stern [61] uses a meet-in-the-middle search for error positions, and 2011 May–Meurer–
Thomae [52] and 2012 Becker–Joux–May–Meurer [3] use a “representations” idea adapted
from subset-sum algorithms.

All of these algorithms can be combined with “quantum walks” such as Grover’s algorithm;
see [4], [44], and [45]. This requires rebalancing various algorithm parameters, generally
reducing the benefit of more sophisticated combinatorial searches, as pointed out in [4,
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Section 3].

The literature has also explored various algorithmic ideas other than information-set decod-
ing. One can, for example, try to find a low-weight vector in a code by taking a large list
L of random vectors, computing a list L′ of short differences from L, computing a list L′′ of
short(er) differences from L′, etc. Compared to information-set decoding, the alternatives
studied so far have turned out to be worse, at least for the parameter ranges of interest
for McEliece’s cryptosystem. A useful way to monitor progress is to quantify algorithm
performance for a wider range of parameters; see, e.g., [20].

3.4 Asymptotic costs of information-set decoding

The ratio
(
n−k
t

)
/
(
n
t

)
, essentially the success probability of one iteration of Prange’s algorithm,

is (1− k/n)(1− k/(n− 1)) · · · (1− k/(n− t+ 1)). The following easy asymptotic statement
holds for any real number R with 0 < R < 1: if k ∈ (R + o(1))n, and t ∈ o(n), then
(1− k/n)(1− k/(n− 1)) · · · (1− k/(n− t+ 1)) is (1−R+ o(1))t as n→∞. The total cost
of Prange’s algorithm is then (1/(1−R) + o(1))t.

Remarkably, none of the improvements from Section 3.3 have done better than this. The
improvements are merely changing the o(1), without affecting the main constant 1/(1−R).
In other words, the improvements are covering only fringe aspects of costs, without affecting
the core combinatorial difficulty of finding e. For details of this analysis, see [11] and [10,
Section 1] regarding Stern’s algorithm and various other algorithms known up to that point,
and [62] regarding the use of “representations”.

In particular, if one takes k ∈ (R + o(1))n in the McEliece system, then t is asymptotically
(1−R+ o(1))n/log2 n, so the assumption t ∈ o(n) holds. The cost of Prange’s algorithm is
(1/(1 − R)1−R + o(1))n/log2 n, and the cost of the most efficient attack known today is also
(1/(1−R)1−R + o(1))n/log2 n. Meanwhile the ciphertext size is (1−R+ o(1))n bits, and the
key size is (R(1−R) + o(1))n2 bits. Security level 2b thus uses key size (c0 + o(1))b2(log2 b)

2

where c0 = R/(1 − R)(log2(1 − R))2. This c0 reaches its minimum value, approximately
0.7418860694, when R is approximately 0.7968121300, as mentioned in the separate “design
rationale” document.

Some papers indicate that asymptotic attack exponents have improved. This is because
those papers are measuring their results for much larger t ∈ Θ(n), such as “half of the
GV distance”. This inflation of t increases cost from 2Θ(n/log2 n) to 2Θ(n), and also makes
differences between algorithms more noticeable. For example, [53] reports O(20.0473n) when
t is half of the GV distance, compared to O(20.0576n) from Prange’s algorithm. Such large
asymptotic sizes of t are of interest in coding theory but do not appear in the McEliece
system.

Known quantum attacks have a simple effect on the asymptotics, replacing 1/(1−R)1−R+o(1)
with its square root.
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3.5 Concrete costs of information-set decoding

It is important to realize that o(1) does not mean 0: it means something that converges to
0 as n → ∞. More detailed attack-cost evaluation is therefore required for any particular
parameters.

For example, for R = 0.8, Prange’s algorithm costs (5 + o(1))t, and various improved algo-
rithms also cost (5 + o(1))t. It is incorrect to replace o(1) with 0, obtaining the statement
that Prange’s algorithm costs 5t and the statement that various improved algorithms also
cost 5t; the latter two statements contradict each other, given the experimentally verified
fact that the improvements reduce costs.

Many of the papers cited above include precise operation counts and precise probability
formulas for each attack iteration. A closer look shows that these operation counts tend
to omit important components of attack costs. For example, the lowest operation counts
in the literature ignore the costs of random access to a huge array, much larger than the
public key being attacked. In reality, time and energy are required to move data across
long distances, and to control which array elements are being accessed; meanwhile the same
amount of attack hardware allows much more parallelism for low-memory attacks.

As numerical examples of the importance of memory access, Table 1 reports output of the
Esser–Bellini security estimator [33] for each of the selected Classic McEliece parameter sets,
under three different models supported by the estimator:

• The rows where “mem” is 0 use a model making a physically implausible assumption
of free access to arbitrarily large amounts of memory. In this model, the 2011/2012
algorithms using “representations” provide noticeable speedups compared to Stern’s
1989 algorithm.

• The rows where “mem” is 1/2 use a model assigning plausible square-root costs to
memory access. The rows where “mem” is 1/3 use a model assigning cube-root costs to
memory access. In these models, the algorithms using “representations” provide much
smaller speedups compared to Stern’s algorithm. In other words, most of the claimed
speedup from these algorithms at cryptographic sizes relies on assigning unrealistically
low costs to memory access.

Regarding quantum attacks, it is structurally clear that known quantum attacks produce
somewhat less of a speedup for these algorithms than they do for, e.g., AES key search,
since the application of Grover’s method (or more general quantum walks) to information-
set decoding suffers much more overhead in the inner loop. Using Grover’s method also
reduces the benefit of more sophisticated combinatorial searches, as noted in Section 3.3.

Comparison to AES security. A requirement in the NIST Post-Quantum Cryptography
Standardization project is to compare concrete security levels to AES brute-force attacks
and/or SHA-2 collision attacks. In particular, the minimum security level allowed is the
security of brute-force AES-128 key search, which NIST estimates as 2143 bit operations.
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param mem Prange Stern Dumer BC BJMM pdw MO BM
348864 0 173.4 151.4 151.4 151.5 141.9 143.4 140.8 142.7
348864 1/3 176.7 159.3 159.7 159.7 159.1 157.8 156.4 157.5
348864 1/2 178.3 162.8 163.2 163.2 162.2 160.3 158.6 159.8
460896 0 216.8 193.3 193.2 193.3 180.8 182.6 179.8 182.1
460896 1/3 220.4 201.7 202.2 202.2 201.6 200.6 198.6 199.8
460896 1/2 222.1 205.3 205.8 205.8 204.8 203.4 201.0 202.2

6688128 0 295.7 268.0 267.9 268.0 247.3 248.8 246.2 249.6
6688128 1/3 299.4 279.2 279.5 279.5 278.9 277.6 274.9 276.4
6688128 1/2 301.2 283.0 283.3 283.3 282.3 280.4 278.2 279.4
6960119 0 296.8 268.4 268.3 268.4 246.6 248.4 245.7 249.2
6960119 1/3 300.4 280.1 280.5 280.5 279.4 278.6 275.8 277.3
6960119 1/2 302.2 283.9 284.3 284.3 283.3 281.4 279.2 280.3
8192128 0 334.1 303.2 307.4 303.4 277.7 279.1 275.6 281.1
8192128 1/3 337.7 316.8 317.1 317.1 316.3 315.5 311.9 313.3
8192128 1/2 339.5 320.7 321.0 321.0 320.0 318.6 315.6 317.0

Table 1: Output of the Esser–Bellini estimator for the selected Classic McEliece parameter sets.
The “mem” column is 0 for estimates assuming free memory access, 1/3 for estimates using a cube-
root assumption, and 1/2 for estimates using a square-root assumption. Some cost components are
ignored in all estimates.

If these requirements include “mem” being 0, counting only bit operations with free memory
access, then Table 1 raises the following concern: the smallest number in the table, 140.8 for
mceliece348864, is slightly below 143. However, the underlying estimator from [33] counts
each vector operation as just 1 operation: in particular, finding C collisions between two lists,
each list containing L vectors, is assigned cost 2L+C, no matter what the vector length is.
Consequently, the 140.8 actually counts more than 2143 bit operations. The exact numbers
in Table 1 should be expected to be superseded by larger numbers from future estimators
that count bit operations.

More importantly, the 140.8 is for an attack using memory 286.6, according to the same
estimator. Accounting for costs of memory access shows that all known attacks against
mceliece348864 are much more expensive than brute-force AES-128 key search.

Larger parameter sets can be above or below (e.g.) AES-256 depending on whether costs of
memory are included. The Classic McEliece submission has always included the 6960119

parameter set, and has always explicitly distinguished two different methods of comparing
attacks against this parameter set to attacks against AES-256:

• Imagining free memory access: The submission has always stated that this parameter
set is breakable using fewer bit operations than brute-force AES-256 key search when
the costs of memory access are ignored: “Subsequent ISD variants have reduced the
number of bit operations considerably below 2256.” This is consistent with the 2246.6

number in Table 1.
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• Counting realistic costs for memory: “We expect that switching from a bit-operation
analysis to a cost analysis will show that this parameter set is more expensive to
break than AES-256 pre-quantum and much more expensive to break than AES-256
post-quantum.” This is consistent with the 2279.2 number in Table 1.

Given the fact that memory is not free in the real world, the submission has always assigned
this parameter set to NIST’s “Category 5” (AES-256).

Similarly, when the submission added further parameter sets, it assigned those parameter
sets to “categories” on the basis of counting realistic costs for memory. One can object to
the assignment of 460896 to “Category 3” (AES-192) since NIST estimates 2207 operations
for brute-force AES-192 key search while Table 1 says 201.0, which is below 207; but, as
noted above, the estimates in the table are underestimates of bit operations, for example
counting each vector operation as just 1 operation.

Since the underlying facts have not changed, the submission continues to assign its selected
parameter sets to “categories” 1, 3, 5, 5, 5 respectively. As before, these assignments are
based on counting realistic costs for memory.

If NIST instead decides to make “category” assignments on the basis of bit operations with
free memory access, then the correct assignments will instead be 1, 2, 4, 4, 5. This does not
reflect any instability in the Classic McEliece security estimates: the submission has always
been careful to distinguish between these two different types of accounting for the costs of
attacks.

3.6 Structural attacks

McEliece’s G is a random generator matrix for the binary Goppa code determined by the
private key (g, α0, . . . , αn−1), specifically with n = q; see Section 2.1. The description in
McEliece’s original paper is different but equivalent: there is a permutation matrix P that
permutes a standard order of field elements into (α0, . . . , αn−1), and there is an invertible
matrix S that converts a standard generator matrix for the binary Goppa code into a random
generator matrix for the same code.

Many followup cryptosystems have used alternatives to binary Goppa codes, sometimes
switching to another metric (examples include rank-metric cryptography and lattice-based
cryptography) and sometimes continuing to use the Hamming metric. This has motivated
study of structural attacks against a wide variety of targets. Some of these alternative
cryptosystems are broken while others are not. As noted in the separate “design rationale”
document, authors of attacks on other codes often study the performance of their attacks
against binary Goppa codes; see the examples cited there and in [54].

Potentially useful components of structural attacks sometimes appear as attacks using
“partial information”. For example, 2022 Kirshanova–May [46] presented a fast algo-
rithm to recover the private key (g, α0, . . . , αn−1) given the public key and partial infor-
mation (α0, . . . , αn−k). This improves on an earlier observation that one can recover g from
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(α0, . . . , αn−1). Consequently, given just the public key, one can recover the private key with
a brute-force search through possibilities for (α0, . . . , αn−k). There are q(q−1) · · · (q−n+k)
possibilities; e.g., about 24794.655 possibilities for McEliece’s original parameters (q, n, k, t) =
(1024, 1024, 524, 50), and about 29116.797 possibilities for (q, n, k, t) = (4096, 3488, 2720, 64).

As another example (also mentioned in the separate “design rationale” document), 2000
Sendrier [58] introduced a “support-splitting algorithm” that quickly recovers (α0, . . . , αn−1)
from the public key, g, and {α0, . . . , αn−1}, under minor assumptions. In the case n = q,
the set {α0, . . . , αn−1} is known; consequently, given just the public key, one can recover
the private key with a brute-force search through possibilities for g. There are about qt/t
possibilities; e.g., about 2494.356 possibilities for McEliece’s original parameters, and about
2762 possibilities for (q, t) = (4096, 64). Known symmetries provide only a small speedup.

4 OW-CPA security of modified cryptosystems

4.1 OW-CPA security of length below field size

As noted in Section 3.6, McEliece’s original cryptosystem chose n specifically as q, a power
of 2. More general algorithm statements allowing n ≤ q, and proposals specifically to take
n < q, appeared later, for example in [9, Section 7].

What happens if n < q is breakable, while the original n = q proposal is safe? Appealing to
the long history of study of the original McEliece system does not answer this question: a
different special case of a generalized system could have much less security than the original
system.

Shortening as a reduction across parameters. A simple answer is that any attack
A against parameters (q, n, t), for any n ≤ q, can be used as an attack against parameters
(q, q, t) as follows.

Consider a McEliece private key Γ = (g, α0, . . . , αq−1) with parameters (q, q, t). The attacker
is given the corresponding code Γ2 (represented as a uniform random generator matrix) and
a vector w = c+ e ∈ Fq2, where c ∈ Γ2, e ∈ Fq2, and e has weight t. The attacker’s objective
is to find c, or equivalently to find e.

The attack using A has five steps:

• Select, uniformly at random, an injection π : {0, . . . , n− 1} → {0, . . . , q − 1}. Define Π
as the corresponding linear map from Fn2 to Fq2, moving the coordinate at each position
j ∈ {0, . . . , n− 1} to position π(j) and filling in 0 at other positions.

• Compute, by linear algebra, the subspace Γ2 ∩ ΠFn2 . This is exactly ΠΓ′2 where Γ′ =
(g, απ(0), . . . , απ(n−1)).

• Compute, by linear algebra, a uniform random vector w′ ∈ Fn2 such that Πw′−w ∈ Γ2.
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Abort if no such vector exists.

• Apply the parameter-(q, n, t) attack A to Γ′2 and w′ to find c′ ∈ Γ′2 and e′ ∈ Fn2 of
weight t such that w′ = c′ + e′. Abort if A fails.

• Output e = Πe′ and c = w − e.

If this attack succeeds then e = Πe′ is supported on positions π(0), . . . , π(n − 1), an event
that occurs with probability

(
n
t

)
/
(
q
t

)
. Conversely, if e is supported on these positions, then

e can be expressed uniquely as Πe′; there exist vectors w′ ∈ Fn2 with Πw′ − w ∈ Γ2, such
as w′ = e′; and the inputs (Γ′2, w

′) to A have the correct distribution, namely a uniform
random binary Goppa code with parameters (q, n, t) and a uniform random vector c′ + e′

with c′ ∈ Γ′2, e′ ∈ Fn2 , and e′ of weight t.

To summarize, the success probability of this attack against parameters (q, q, t) is exactly(
n
t

)
/
(
q
t

)
times the success probability of attack A against parameters (q, n, t). The cost of

the attack is simply the cost of A plus some low-cost linear algebra.

The conventional perspective is that this reduction is not very tight:
(
n
t

)
/
(
q
t

)
can be small

if n is not close to q. However, this factor has to be compared to the target security level,
which is not the same for parameters (q, q, t) and (q, n, t).

The starting assumption is that we understand the success probability of attacks (within
the resources available to the attacker) against parameters (q, q, t), not much better than
the success probability of Prange’s algorithm for parameters (q, q, t), which is approximately(
mt
t

)
/
(
q
t

)
per iteration. The reduction then says that the success probability of attacks (within

the same resources minus the cost of linear algebra in the reduction) against parameters
(q, n, t) is at most

(
q
t

)
/
(
n
t

)
times higher than this, and hence not much better than the

success probability of Prange’s algorithm for parameters (q, n, t), which is approximately(
mt
t

)
/
(
n
t

)
per iteration.

From this perspective, the tightness loss of the reduction is actually the ratio
S(q, q, t)/S(q, n, t), where S is the speedup factor of state-of-the-art algorithms compared to
Prange’s algorithm. Full quantification depends on the exact cost of state-of-the-art attacks,
as in Section 3.5.

For example, in the setting of Table 1 with 1/2 for “mem”, the tightness loss is just 0.8
bits for 460896. To check this calculation, run the estimator for (4608, 96) and (8192, 96),
and compare the security-level difference to

(
q
t

)
/
(
n
t

)
. In other words, instead of directly

analyzing the cost of known attacks against (4608, 96), one can, at the expense of 0.8 bits
in the resulting security level, analyze the cost of known attacks against (8192, 96)—which
is a parameter set for McEliece’s original system, justifiably appealing to the long history of
study of that system. As another example, the tightness loss is just 0.3 bits for 6960119.

The cryptanalytic perspective. The literature on information-set decoding consistently
handles arbitrary values of n, without regard to whether n is a power of 2. The obvious
explanation for S(q, q, t) being marginally larger than S(q, n, t) is that q is larger than n, not
that size n has been studied less than size q.
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The question of whether n = q has more effect on structural attacks. In particular, taking n
considerably below q is an extra defense against support splitting, since the set {α0, . . . , αn−1}
is kept secret: for 6960119, there are

(
q
n

)
≈ 24997 possibilities for this set, although there

could be ways to merge work across possibilities. Meanwhile there are no known attack
strategies for which n = q is an extra defense.

4.2 OW-CPA security of systematic-form public keys

The next modification made to McEliece’s original system is sending public keys in systematic
form. This modification has two effects. The first effect is to restrict attention to binary
Goppa codes that have parity-check matrices of the form (Imt | T ), restarting key generation
whenever other codes occur. This form of parity-check matrix has been, for all parameters
of interest, experimentally verified to occur for approximately 29% of binary Goppa codes.

Any attack with probability p against this restricted set of binary Goppa codes, combined
with verifying that the input code is systematic, is an attack with probability approximately
0.29p against the full set of binary Goppa codes used in McEliece’s cryptosystem. This is a
tightness loss below 1.8 bits. There is no evidence that any such security loss occurs.

The second effect of the modification is to transmit T rather than transmitting McEliece’s
public key, a uniform random generator matrix for the same code. Any attack against T
can be used to attack any generator matrix for the same code, and in particular McEliece’s
public key, since anyone given any generator matrix can quickly compute the systematic-
form public key. This reduction preserves probability, and preserves cost aside from simple
linear-algebra steps.

More generally, any attack with probability p against binary Goppa codes in semi-systematic
form implies an attack with probability pσ against McEliece’s public key, where σ is the
probability of a binary Goppa code being reducible to semi-systematic form; for example, the
tightness loss is a small fraction of a bit for (µ, ν) = (32, 64). The point is that anyone given
McEliece’s public key can reduce it to semi-systematic form (while permuting ciphertexts
accordingly), aborting if the reduction fails, and then apply any semi-systematic-form attack.

4.3 OW-CPA security of syndromes as ciphertexts

Another standard modification is sending Niederreiter’s ciphertexts He rather than
McEliece’s ciphertexts Ga+ e.

For any distribution of parity-check matrices H publicly computable from the public code
(e.g., the unique systematic-form parity-check matrix (Imt | T ) for a systematic-form code),
Niederreiter’s OW-CPA problem is equivalent to McEliece’s OW-CPA problem for the same
code. In particular, any attack recovering e from Niederreiter’s He and H can be used with
negligible overhead to recover (a, e) from McEliece’s Ga+e and G. Specifically, given Ga+e
and G, compute a parity-check matrix H for the same code, multiply H by Ga+ e to obtain

14



HGa+He = He, apply the attack to recover e from He, subtract e from Ga+ e to obtain
Ga, and recover a by linear algebra.

5 IND-CCA2 security

5.1 IND-CCA2 attacks against the original McEliece cryptosys-
tem

McEliece’s original PKE is trivially broken in the IND-CCA2 attack model. Here are three
examples of attacks:

• The attacker chooses two different messages a, a′; is given a challenge ciphertext C,
either Ga+ e or Ga′ + e′; and checks whether C −Ga has weight t.

• The attacker chooses δ 6= 0; modifies a ciphertext Ga + e into Ga + Gδ + e; is given
the new plaintext a+ δ; and subtracts δ to obtain the target plaintext a.

• The attacker adds two errors to a ciphertext Ga+ e. There is a noticeable chance that
one error position is in e and the other is not, producing a valid new ciphertext Ga+e′,
and then the attacker is given a.

Similarly trivial attacks work against Niederreiter ciphertexts. Here are three examples:

• The attacker chooses distinct e, e′; is given a challenge ciphertext C, either He or He′;
and checks whether the ciphertext is He. (More generally, deterministic PKEs never
provide IND-CCA2 security.)

• The attacker chooses a weight-2 vector δ; modifies a ciphertext He into He+Hδ; has
a noticeable chance of receiving a new plaintext e + δ; and subtracts δ to obtain the
target plaintext e.

• Even in a weaker attack model that merely reveals whether decryption succeeds (see,
e.g., [66]) rather than revealing plaintexts, the attacker tries many choices of weight-
2 vectors δ, noting all positions used in vectors δ for which decryption of He + Hδ
succeeds. Each success notes one error position and one non-error position, and errors
are at considerably under half of the positions, so the most popular positions will be
the error positions.

5.2 Features of Classic McEliece supporting IND-CCA2 security

Classic McEliece adds extra defenses with the goal of upgrading OW-CPA security to IND-
CCA2 security. Most importantly:

• Classic McEliece ensures PKE “rigidity”. This means that the decryption function
outputs a plaintext e only when the input ciphertext is He; for an input ciphertext
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not of the form He, the decryption function outputs ⊥.

• Classic McEliece wraps the PKE into a KEM, always choosing the plaintext e uniformly
at random. This prevents the attacker from choosing plaintexts e, e′. The IND-CCA2
definition for KEMs does not allow the attacker to choose plaintexts.

• Classic McEliece does not output the plaintext e: it outputs only a hash H(e) (or, more
precisely, H(1, e, C) where C is the ciphertext). An attacker seeing H(e + δ) cannot
determine H(e), unless there is a serious problem with the hash function H.

• Classic McEliece does not reveal decryption failures. Instead it uses “implicit rejec-
tion”: if the PKE returns ⊥ then the KEM outputs a pseudorandom function of the
ciphertext (more precisely, H(0, s, C) where C is the ciphertext and s is a secret in-
cluded in the private key).

1999 Fujisaki–Okamoto [37] introduced a generic transform where decryption checks a reen-
cryption of the plaintext against the ciphertext; the “rigidity” abstraction is from 2018
Bernstein–Persichetti [12]. 2001 Shoup [60] introduced hashed KEMs, along with the KEM
abstraction. Implicit rejection was introduced by 2012 Persichetti [55] in the context of
code-based cryptography, and generalized by 2017 Hofheinz–Hövelmanns–Kiltz [41].

Review of the security of these defenses is simplified by two further features of the underlying
PKE. First, the PKE is correct (see Section 2): the decryption function always correctly
outputs e given He. Second, the PKE is deterministic; reencryption does not require the
preliminary derandomization step from [37], a step that could lose security.

5.3 IND-CCA2 security with a generic transform

There are generic theorems that, for any correct deterministic PKE, almost say that IND-
CCA2 security of a KEM using reencryption, hashing, and implicit rejection is tightly related
to OW-CPA security of the PKE. More precisely, there is a simple theorem tightly guar-
anteeing ROM IND-CCA2 security, and a more complex theorem that almost as tightly
guarantees QROM IND-CCA2 security.

Reviewers are cautioned that provable security, like cryptanalysis, can have gaps (e.g., the
gap between QROM IND-CCA2 security and IND-CCA2 security) and errors (e.g., [12] gave
counterexamples to some previously claimed IND-CCA2 theorems). This section surveys the
structure of what is known.

5.3.1 ROM IND-CCA2 security

The state-of-the-art theorem is from 2018 Bernstein–Persichetti [12, Theorem 14.3]. The
proof techniques are older but are factored in [12] into three separately verifiable theorems:
[12, Theorem 6.4] handling reencryption, [12, Theorem 8.2] handling encryptions of oracle
queries, and [12, Theorem 13.3] handling decapsulation queries. Part of this modulariza-
tion comes from [41], which was factored into (1) one theorem for derandomization and
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reencryption and (2) one theorem for the remaining proof steps.

The KEM construction considered in [12, Theorem 14.3], defined in [12, Definition 14.1],
works as follows:

• Start from any correct deterministic PKE.

• The KEM public key is the PKE public key.

• The KEM private key includes the PKE private key, the PKE public key (for reen-
cryption), and an implicit-rejection key s generated uniformly at random.

• The session key for plaintext p and PKE ciphertext C is H(1, p, C).

• The KEM ciphertext is the same as the PKE ciphertext.

• Decapsulation of C begins by decrypting C. If this produces a plaintext p that reen-
crypts to C then decapsulation outputs H(1, p, C). Otherwise decapsulation outputs
H(0, s, C).

Note that this is slightly different from what Classic McEliece does: for example, the Classic
McEliece private key does not include a copy of the public key. See Section 5.4.

The conclusion of [12, Theorem 14.3] is that the ROM IND-CCA2 success probability of an
attack A against the KEM is at most the sum of the following terms:

• The OW-CPA success probability of an attack B against the KEM.

• The number of decapsulation queries divided by the size of the plaintext space.

• The number of hash queries, times 2, divided by the size of the implicit-rejection key
space.

As noted in Section 1, the selected Classic McEliece parameter sets use 256-bit implicit-
rejection keys. The third term is then negligible for any plausible number of hash queries.
The second term is even much smaller; e.g., the number of plaintexts e is above 2456 for
348864.

The cost overhead of B compared to A includes checking an encryption of each hash query.
This can be a noticeable overhead: encryption is very fast in hardware, but hashing is also
very fast in hardware. It is interesting to note that taking a slower hash function (for example,
more rounds of hashing) could noticeably improve this aspect of proof tightness at negligible
cost to the user, and would slow down any attack bottlenecked by hashing. However, the
tightness loss is small in any case (at most a few bits), and the negligible second extra term
above indicates that generic hashing is not a threat in the first place.

5.3.2 QROM IND-CCA2 security

For the broader class of QROM IND-CCA2 attacks, the state-of-the-art theorem is from 2019
Bindel–Hamburg–Hövelmanns–Hülsing–Persichetti [14, Theorem 2]. This considers the same
KEM as above, with the following generalizations:
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• The construction begins with any “ε-injective” deterministic PKE. Any correct deter-
ministic PKE is ε-injective with ε = 0.

• The implicit-rejection function H(0, s, C) is generalized to F (s, C).

Classic McEliece does not use these generalizations.

Note that H(1, p, C) is denoted H(p, C) in [14]. This makes no difference for [14, Theorem
2], but if F (s, C) were set to H(s, C) without input-space separation then the quantitative
conclusions would need to be slightly adjusted to account for the probability that p collides
with s. Also, the KEM in [14, Figure 3] does not keep a copy of the public key in the private
key; decapsulation in [14, Figure 3] implicitly assumes that the public key can be recomputed
from the private key.

The conclusion of [14, Theorem 2] is that the QROM IND-CCA2 success probability of an
attack A against the KEM is at most the sum of the following terms:

• 2 times the square root of the OW-CPA success probability of an attack B1 against
the PKE.

• The advantage of an attack B2 at “finding failing ciphertexts” in the PKE. This
advantage is 0 for a correct PKE such as the McEliece PKE.

• 2 times the PRF advantage of an attack B3 against F . For the usual choice F (s, C) =
H(0, s, C), [14, Corollary 1] says that the QROM PRF security of F is at most 2 times
the number of hash queries divided by the square root of the size of the implicit-
rejection key space.

• The quantity ε mentioned above in ε-injectivity. This is 0 for a correct PKE.

Each of the attacks uses “about the same time and resources” as A.

The square root of the size of the implicit-rejection key space corresponds to a Grover search.
This is not a threat for 256-bit keys. The only tightness loss of interest thus comes from the
first term: 2 times the square root of the OW-CPA success probability. For example, if the
goal is to keep the IND-CCA2 success probability below 1/1000, then applying the theorem
requires the OW-CPA success probability to be kept below 1/4000000.

In the context of Classic McEliece, the success probabilities of the best OW-CPA attacks
known have the following shape: the best probability-δ non-quantum attacks use about δ2λ

operations, and the best probability-δ2 quantum attacks use about δ2λ/2 operations. If these
are optimal then, by [14], a QROM IND-CCA2 attack has success probability at most about
2δ using about δ2λ/2 operations.

These proofs rely on the PKE being deterministic. QROM results are available in [48] for
randomized PKEs, but those results are much looser: they need to assume a bound on
PKE attack probabilities on the scale of δ/q, where q is the number of hash queries. For
values of δ of interest, δ/q is much smaller than δ2. These results also assume IND-CPA
security, which is a stronger assumption than OW-CPA security. There are other results for
randomized PKEs assuming only OW-CPA security, but these results are even less tight.
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Classic McEliece uses a deterministic PKE, so it avoids all of these difficulties.

5.3.3 IND-CCA2 security

The theorems surveyed above do not rule out the possibility of an IND-CCA2 attack being
faster than any QROM IND-CCA2 attack.

Consider, for example, an attack that predicts that the session key is 0. This is an IND-
CCA2 attack with advantage almost exactly 1 if the chosen hash function H happens to
always output 0. This does not contradict QROM IND-CCA2 security: the same attack has
advantage almost exactly 0 against a uniform random function H.

It is easy to check experimentally that a standard hash function does not always output 0.
However, it is not easy to check experimentally whether a standard hash function produces a
particular output with probability, e.g., 1/250, which would enable an attack with probability
almost exactly 1/250. This would also enable a feasible collision attack, so it is ruled out by
collision resistance of the hash function, but this example shows that review of IND-CCA2
security relies on review of hash-function cryptanalysis.

One can construct artificial examples of hash functions for which it is easy to break IND-
CCA2 even when it seems difficult to break the standard hash-function goals of collision re-
sistance and preimage resistance. It would be surprising if this happened for “unstructured”
hash functions, such as the standard SHAKE256 function selected in Classic McEliece; but
further analysis is warranted regarding potential interactions between the security of hash
functions and the security of public-key cryptography.

5.4 IND-CCA2 security with a more efficient transform

The KEM constructed in Section 5.3 is still not exactly the same as the Classic McEliece
KEM, so, even if that KEM is IND-CCA2 secure, further steps are required to deduce
IND-CCA2 security of Classic McEliece.

This section covers some of the differences, namely efficiency improvements in the CCA
transform. These improvements make no changes to the input-output behavior visible to
the attacker in the IND-CCA2 model, so they preserve IND-CCA2 security. The remaining
differences are covered in Section 5.5.

5.4.1 Reducing costs of reencryption

After decapsulation has decrypted a ciphertext C to obtain a plaintext p, checking whether
p reencrypts to C does not necessarily require a full computation of the encryption function.

In particular, in the Classic McEliece specification, the decryption function Decode is
already guaranteed to output
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• a weight-t vector e whose syndrome He is the decoding input C if such a vector exists,
or

• ⊥ otherwise.

Consequently, there is no need for the KEM to recompute He; this recomputation has no
effect and is simply skipped. In other words, the PKE is already rigid.

Inside the Decode specification, this rigidity is enforced by Step 4, which checks whether
e has weight t and whether He matches the input. The matrix H is not provided as input
to Decode but, as noted in the separate “guide for implementors” document, can be re-
computed via MatGen, or skipped entirely in favor of a more efficient check of the same
property.

The details of the more efficient check are relevant for reviewers who are checking that a
claimed implementation correctly computes the specified decapsulation algorithm. In short,
the problem is to check whether c = v+e is in the Goppa code defined by (g, α0, . . . , αn−1) (see
Section 2.1), and this is simply a matter of checking whether the polynomial

∑
i ciA/(x−αi)

is a multiple of g in the polynomial ring Fq[x]. This computation typically reuses the fast
syndrome-computation subroutine used at the beginning of decoding; see [7], [8], and [23].

Step 2 of Decode is specified to either fail or find c with Hc = 0. The usual decoding
algorithm is shown in [7, Section 7] to guarantee that Hc = 0 even without checking this;
Hc = 0, in turn, implies that He matches the input. However, having a separate check
that He matches the input makes the decapsulation procedure more robust; see [7, Section
8]. The specification is written with a separate check of He in Step 4 even though this is
mathematically unnecessary. The specification also requires checking the weight of e.

5.4.2 Reducing space requirements for the private key

The private key in the KEM in Section 5.3 includes the PKE private key, the PKE public
key, and the implicit-rejection key s. This space consumption can usually be improved: for
example, if the public key can be computed efficiently from the private key, then it can be
recomputed on demand, or optionally cached.

In the Classic McEliece specification, the situation is even simpler: decapsulation does not
look at the PKE public key (see Section 5.4.1), so the PKE public key is simply eliminated
from the KEM private key. This preserves IND-CCA2 security.

5.4.3 Simplifying generation of the implicit-rejection key

The round-1 Classic McEliece submission cited ROM/QROM IND-CCA2 proofs in which
the implicit-rejection key was taken from the set of plaintexts. See, e.g., [41, Figure 12].

In Classic McEliece, the implicit-rejection key s is generated from a larger space than the
plaintext space. It is simpler to generate a uniform random n-bit string than to generate a
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uniform random weight-t n-bit string.

The documentation thus included an extra step to point out that this was safe: “The set of
s enters into the security analysis solely for the indistinguishability of H0(s, C) from uniform
random.” Formally, however, reviewing this statement required re-checking proof details
rather than using theorems as black boxes.

Subsequent theorems allowed the implicit-rejection key space to be larger than the plaintext
space (see, e.g., [57], [12], and [14]), so this extra step in the analysis is no longer required.

5.5 Generation of random objects

The result of all of the cryptosystem transformations described in previous sections is the
“Model Classic McEliece KEM” defined in Section 5.5.3.

This is still not exactly Classic McEliece. For reasons explained in the separate “design
rationale” document, Classic McEliece uses functions KeyGen and Encap that are different
from the functions ModelKeyGen and ModelEncap in Model Classic McEliece:

• Where ModelKeyGen says “generate a uniform random monic irreducible poly-
nomial g” and “generate a uniform random sequence (α0, α1, . . . , αn−1) of n dis-
tinct elements of Fq”, KeyGen instead specifies a particular function generating
(g, α0, . . . , αn−1), using a source of uniform random bits.

• Where ModelEncap says “generate a uniform random vector e ∈ Fn2 of weight t”,
Encap instead specifies a particular function generating e, again using a source of
uniform random bits.

Security analysis is factored through Model Classic McEliece. Previous sections of this doc-
ument study IND-CCA2 security of Model Classic McEliece. Sections 5.5.4 and 5.5.5 study
IND-CCA2 security of Classic McEliece, assuming IND-CCA2 security of Model Classic
McEliece. This modularization shields most of the IND-CCA2 analysis from the details of
how g, α0, . . . , αn−1, e are generated.

There is an overlap between this section and the separate “design rationale” document,
but this section focuses on supporting IND-CCA2 security review of the specified functions,
while the corresponding section of the other document is explaining why these functions were
chosen.

5.5.1 Model key generation

The following randomized algorithm ModelKeyGen takes no input. It outputs a public
key and private key. Here is the algorithm:

1. Generate a uniform random n-bit string s.

2. Generate a uniform random monic irreducible polynomial g(x) ∈ Fq[x] of degree t.
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3. Generate a uniform random sequence (α0, α1, . . . , αn−1) of n distinct elements of Fq.

4. Define Γ = (g, α0, α1, . . . , αn−1).

5. Compute (T, cmt−µ, . . . , cmt−1,Γ
′) = MatGen(Γ). If this fails, restart the algorithm.

6. Output T as the public key, and (Γ′, s) as the private key.

The MatGen function used inside ModelKeyGen is defined in the separate “cryptosystem
specification” document.

Compared to the output (δ, c, g, α, s) of KeyGen where α = (α′0, . . . , α
′
n−1, αn, . . . , αq−1),

the output (Γ′, s) of ModelKeyGen includes the information used by Decap, namely
Γ′ = (g, α′0, . . . , α

′
n−1) and s; Decap does not use δ, c, or αn, . . . , αq−1. See Section 5.5.5 for

other differences between ModelKeyGen and KeyGen.

5.5.2 Model encapsulation

The following randomized algorithm ModelEncap takes as input a public key T . It outputs
a ciphertext C and a session key K. Here is the algorithm:

1. Generate a uniform random vector e ∈ Fn2 of weight t.

2. Compute C = Encode(e, T ).

3. Compute K = H(1, e, C).

4. Output ciphertext C and session key K.

The Encode function used inside ModelEncap is defined in the separate “cryptosystem
specification” document.

5.5.3 The Model Classic McEliece KEM

By definition, Model Classic McEliece uses the ModelKeyGen function from Section 5.5.1
for key generation, the ModelEncap function from Section 5.5.2 for encapsulation, and the
Decap function from the separate “cryptosystem specification” document for decapsulation.

5.5.4 Random objects in encapsulation

The only difference between ModelEncap and Encap is in how the vector e is generated:
ModelEncap generates e as a uniform random weight-t vector, whereas Encap generates
e by calling the FixedWeight subroutine from the separate “cryptosystem specification”
document. The point of the following analysis is that the output of FixedWeight is a
uniform random weight-t vector, so there is no change in IND-CCA2 security.

FixedWeight begins by generating a uniform random σ1τ -bit string, where σ1 ≥ m and τ ≥
t. It takes mτ of these bits (from separate positions) to form τ m-bit integers d0, d1, . . . , dτ−1.
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The sequence d = (d0, d1, . . . , dτ−1) is a uniform random element of {0, 1, . . . , 2m − 1}τ .

Define u = #{j : dj < n}. Define a = (a0, a1, . . . , au−1) as the corresponding subsequence of
d.

For any particular u, there are exactly nu possibilities for the sequence a. For each choice of
sequence a, there are exactly

(
τ
u

)
(q−n)τ−u sequences (d0, d1, . . . , dτ−1) producing a: the factor(

τ
u

)
is the number of choices of the set {j : dj < n}, and the factor (q − n)τ−u is the number

of choices for the complementary subsequence. (As a double-check,
∑

u

(
τ
u

)
(q−n)τ−unu is qτ ,

which is the number of possible sequences d.) Hence, given u, the conditional distribution
of a is uniform.

FixedWeight restarts if u < t. Otherwise it computes (a0, a1, . . . , at−1). For any partic-
ular u ≥ t, the conditional distribution of (a0, a1, . . . , at−1) is the uniform distribution on
{0, . . . , n− 1}t; hence the total distribution of (a0, a1, . . . , at−1) is also the uniform distribu-
tion on {0, . . . , n− 1}t.

FixedWeight then restarts if a0, a1, . . . , at−1 are not all distinct. If this restart does not
occur then the conditional distribution of (a0, a1, . . . , at−1) is the uniform distribution on
sequences of t distinct elements of {0, 1, . . . , n− 1}.

FixedWeight then outputs the vector (e0, . . . , en−1) ∈ Fn2 having bits set at exactly posi-
tions a0, a1, . . . , at−1. This is a uniform random weight-t vector.

Formally, what this shows is that if FixedWeight terminates then its output is a uniform
random weight-t vector. The algorithm terminates with probability 1, since, for example,
the sequence d = (0, 1, . . . , τ − 1) occurs with positive probability, namely 1/2mτ , on each
restart and produces output, namely (1, 1, . . . , 1, 0, 0, . . . , 0).

5.5.5 Random objects in key generation

There are more differences between ModelKeyGen and KeyGen. The following analysis
covers these differences from bottom up.

Irreducible-polynomial generation. The function Irreducible takes σ1t input bits;
the parameter σ1 is the same as in Section 5.5.4, with σ1 ≥ m. Assume for now that this is
a uniform random element of {0, 1}σ1t.

Irreducible takes mt of these bits to form t elements β0, . . . βt−1 of Fq and then an element
β = β0 + · · ·+ βt−1y

t−1 of Fq[y]/F (y). This is a uniform random element of Fq[y]/F (y).

Irreducible then computes the unique monic irreducible polynomial g ∈ Fq[x] such that
g(β) = 0, and returns g if it has degree t, else ⊥.

Each degree-t monic irreducible polynomial in Fq[x] has exactly t distinct roots in the field
Fq[y]/F (y) and is thus returned for exactly t choices of β. Consequently, if Irreducible
does not fail, then the conditional distribution of g is the uniform distribution on degree-t
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monic irreducible polynomials in Fq[x].

Field-ordering generation. The function FieldOrdering takes σ2q input bits, with
σ2 ≥ 2m. Assume for now that this is a uniform random element of {0, 1}σ2q.

FieldOrdering converts these bits into a uniform random sequence of q elements
a0, a1, . . . , aq−1 of {0, 1, . . . , 2σ2 − 1}q. It returns ⊥ if any of these elements collide.

If no collision occurs then FieldOrdering has a uniform random sequence of q distinct el-
ements of {0, 1, . . . , 2σ2 − 1}q. There is then a unique permutation that sorts these elements,
a uniform random permutation of {0, 1, . . . , q − 1}. The output of FieldOrdering is the
same permutation applied to a standard ordering of Fq; this output is a uniform random
ordering of all field elements.

Key generation. KeyGen generates a uniform random `-bit seed δ and then calls
SeededKeyGen, which calls G to expand δ to a string of n+ σ2q + σ1t+ ` bits.

The latter string is indistinguishable from uniform under a standard PRG assumption on
G. The selected Classic McEliece parameter sets use ` = 256 seed bits, and derive G from
SHAKE256; the review of IND-CCA2 security relies on review of the security of SHAKE256
as a stream cipher with a 256-bit key.

The rest of the analysis here relies on this indistinguishability and replaces the string with
a uniform random string. This string is then decomposed into an n-bit string s, a σ2q-bit
string given to FieldOrdering, a σ1t-bit string given to Irreducible, and an `-bit string
δ′; these are independent uniform random strings.

If FieldOrdering succeeds then it generates a uniform random ordering (α0, . . . , αq−1) of
Fq, as in ModelKeyGen. If Irreducible succeeds then it generates a uniform random
monic irreducible polynomial g of degree t, as in ModelKeyGen. If MatGen succeeds
then it generates the same results as in ModelKeyGen. In short, the KeyGen output, like
the ModelKeyGen output, is a parity-check matrix for a uniform random binary Goppa
code in systematic form for (µ, ν) = (0, 0), or semi-systematic form for general (µ, ν).

The fact that some seeds fail means that the final seed has “only” about 254 bits of entropy.
The easiest way to check this is to experimentally observe the distribution of the number of
restarts of SeededKeyGen on random seeds. Like most private keys in most cryptographic
algorithms, the final seed is efficiently distinguishable from uniform; here by having the
property that SeededKeyGen succeeds without restarts. A search through seeds still
costs more than AES-256 key search.
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6 Security notions beyond IND-CCA2

6.1 Multi-target security

In a multi-message attack scenario, the cost of finding the private key is spread across many
messages. There are also faster multi-message attacks that do not rely on finding the private
key; see, e.g., [43] and [59].

The difficult way to handle multi-message security is to incorporate multiple messages into
every step of the security analysis, trying to identify and protect any system components
that can enable multi-target attacks. The easy way to handle multi-message security is to
take a very high security level and rely on the general fact that attacking T targets cannot
gain more than a factor T . The point is that there is a standard way to use a T -target attack
as a 1-target attack with probability 1/T : simply insert the real target somewhere into a
list of T − 1 simulated targets, and hope that the T -target attack happens to pick the real
target.

For example, for the recommended 6688128 and 6960119 parameter sets, one ciphertext is
expected to be secure against an attacker without the resources to find an AES-256 key, so
264 ciphertexts are expected to all be secure against an attacker without the resources to
find an AES-192 key.

For quantum attacks, the same logic, accounting for the square-root loss of tightness in [14]
(and making the worst-case assumption that there is a corresponding security loss), says that
264 ciphertexts are expected to all be secure against an attacker without the resources to
carry out a 1-target OW-CPA attack with probability roughly 1/2128. This is, when attacks
have Grover-type scaling, roughly the same as an attacker without resources R/264, where
R means the resources to carry out a high-probability 1-target attack.

6.2 Indistinguishability of ciphertexts

For KEMs, IND-CCA2 asks whether an attacker can distinguish a session key from uniform.
For PKEs, IND-CCA2 asks whether an attacker can distinguish a ciphertext for plaintext
m0 from a ciphertext for plaintext m1.

More broadly, the literature often asks which cryptographic objects can be distinguished
from uniform random strings (of the same length), and which cryptographic objects (of the
same length) can be distinguished from each other. For example, the definition of KEM
“anonymity” in [38], motivated by protecting metadata, asks whether an attacker given two
legitimately generated public keys can distinguish the output of encapsulation (the ciphertext
and session key) for the first key from the output of encapsulation for the second key. The
definition of “weak anonymity” asks merely whether the ciphertexts are distinguishable.

For the McEliece cryptosystem, cryptanalysis has focused primarily on one-wayness, recov-
ering a weight-t vector e from Ga+ e or equivalently He. Breaking one-wayness would
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• distinguish the resulting session key from uniform,

• distinguish He from a uniform random string, and

• distinguish He from a ciphertext for another public key.

Conversely, the difficulty of breaking one-wayness is the foundation of the IND-CCA2 secu-
rity analysis for Classic McEliece in Section 5, but does not directly imply a lack of more
general ciphertext distinguishers. As a trivial example, the 6960119 parameter set uses zero-
padding to encode 1547-bit ciphertexts as 194-byte (1552-bit) strings, so those strings are
distinguishable from uniform random 194-byte strings. Whether ciphertexts for two public
keys are distinguishable from each other is an open question.

6.3 Key specificity of decryptable ciphertexts

Consider the following property of a cryptosystem: given two (legitimately generated) public
keys, the attacker has negligible probability of finding a ciphertext for which dec succeeds
(i.e., does not return ⊥) under both of the corresponding private keys.

This property was denoted “strong robustness” in [1]. Formally, the definition in [1] considers
a large space of user identities, with a key for each identity, and asks the attacker to find
two distinct identities and a ciphertext for which dec succeeds under both identities; also,
the definition was given only for PKEs (with dec meaning decryption), not for KEMs (with
dec meaning decapsulation). However, one can also consider the same definition, with or
without identities, for KEMs. See, e.g., [38, Figure 2].

This property of KEMs is incompatible with building KEMs using implicit rejection: for
implicit-rejection KEMs, decapsulation succeeds for every ciphertext. Most proposals for
post-quantum IND-CCA2 KEMs use implicit rejection, and therefore do not provide this
property, as noted in [38]. In particular, Classic McEliece uses implicit rejection, and there-
fore does not provide this property.

A KEM that does not provide this property can nevertheless be used to construct a PKE
providing this property:

• By [38, Theorem 2], it suffices for the KEM to be “strongly collision-free”, meaning that
the attacker cannot find a ciphertext C for which Decap(C, k1) = Decap(C, k2) 6= ⊥.
The theorem also needs a suitable DEM, a requirement that [38] describes as “easily
met”.

• This collision-freeness property, in turn, is achieved by the following generic transfor-
mation: replace each session key k with a hash of (I, k), where I is the user identity.
(In formalizations that do not include identities, define the identity as the public key,
or as a precomputed hash of the public key, or simply enough leading bits of the pub-
lic key to avoid collisions among legitimate keys.) Finding a collision of these hashes
between two different identities implies finding a collision in the hash function.

The same generic transformation can equivalently be applied to the DEM, or kept as an
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intermediate layer between the KEM and the DEM.

This generic transformation is not necessarily required. For example, for Classic McEliece,
perhaps the collisions of weight-t ciphertexts (if C has weight t then it decrypts to
(C, 0, . . . , 0) for every key, as noted in [38, Section 5.1]) are the only collisions that are
feasible to construct, which would mean that it suffices to reject these ciphertexts. These
ciphertexts have negligible chance of occurring legitimately, for the same reason that a single
iteration of Prange’s algorithm has negligible success chance; see Section 3.2. However, such
KEM-specific analyses and modifications are less convincing and more work than adding a
low-cost hash.

As noted in the separate “design rationale” document, Shoup argued in [60, Section 3.3]
that KEMs should avoid hashing “labels” such as identities since “it is easier to implement
labels in the data encapsulation mechanism”; Classic McEliece follows the principle that
any generic transformation aiming at a goal beyond IND-CCA2 is out of scope for a KEM
specification. This is not saying that further hashing should be avoided; it is saying that
cryptographic systems should be appropriately modularized.

6.4 Security with cycling RNGs

Many different cryptographic specifications are defined using uniform random bits, and are
implemented using bits that come from various RNGs. The security analysis of RNGs asks
whether the RNG output is indistinguishable from uniform.

If an RNG is stuck in a short cycle, the standard response is that the RNG is deficient and
must be replaced. A much more complicated response is to ask what impact this cycle has
on applications using the RNG, and to try to modify applications to protect against this
cycle.

Consider, for example, an application in which Alice receives a KEM public key from Bob
and sends a ciphertext to that key, receives a KEM public key from Charlie and sends a
ciphertext to that key, etc. A cycle in Alice’s RNG will (for enough users, depending on
the cycle length) repeat the randomness used for the ciphertexts. This easily breaks many
cryptosystems.

In particular, for Classic McEliece, one can imitate the 1997 Berson attack [13], which
showed how to break related messages in the original McEliece cryptosystem; or, more
trivially, observe that a message He sent by Alice to Eve’s KEM public key will give e to the
attacker Eve, so if e is repeated in a ciphertext for another user then Eve can decapsulate
that ciphertext too.

The following generic transformation ensures that randomness is not repeated across target
identities even when the RNG is cycling: instead of taking random bits for encapsulation
directly from the RNG, take them from a standard PRNG, where the PRNG seed is a hash
of the identity and randomness from the RNG. (As in Section 6.3, appropriate extracts from
the public key can be used as identities in formalizations that do not include identities.)
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Because this is a generic transformation aiming at a goal beyond IND-CCA2, it is out
of scope for the Classic McEliece specification. Commonly used RNGs, including NIST’s
standard RNGs (see [2, Section 8.7.2]), already provide an interface for applications to
provide “additional input” to be hashed into the RNG state; applications are free to provide
the target identity as additional input before calling encapsulation in any KEM.

Applications considering this generic transformation should beware that the security pro-
vided by the transformation is much weaker than the security provided by fixing the RNG. A
cycling RNG will also repeat randomness used to generate ephemeral keys, randomness used
to generate nonces, randomness provided to programs that the user’s browser is running
from Eve’s web page, etc.; the resulting security problems go far beyond KEM encapsu-
lation. Furthermore, the entire idea that deterministic postprocessing can rescue security
when the RNG is repeating outputs relies on the assumption that there is enough entropy
in the RNG; but the famous real-world example in [27] of an RNG repeating outputs was
an example where the RNG had negligible entropy to begin with.

6.5 Security against natural private-key faults

The following extension of IND-CCA2 security is considered in [6]: some decapsulation
queries occur; then a single bit is flipped at a random position in a stored private key;
then further decapsulation queries occur against the modified private key. The motivation
for considering this specific type of fault is that, even when attackers are stopped from
triggering faults, statistics collected by Google regarding naturally occurring DRAM faults
indicate that a noticeable fraction of keys stored in non-ECC DRAM, roughly 0.01% of all
256-bit keys, will be corrupted every year.

The current version of NTRU-HRSS is shown in [6] to not provide security in this model.
The point is that the IND-CCA2 security provided by implicit rejection disappears when a
bit is flipped in the implicit-rejection key. Plaintext confirmation (from [29]) does not have
this issue, but NTRU-HRSS removed plaintext confirmation in 2019. Similarly, the round-
4 version of Classic McEliece does not have plaintext confirmation, and does not provide
security in this model.

However, the following generic transformation converts IND-CCA2 security into this exten-
sion of IND-CCA2 security: store the private key encoded using an error-correcting code of
distance at least 3, and apply a 1-error-correcting decoder when reading the private key. A
conventional choice of 1-error-correcting code is a distance-4 extended Hamming code.

Because this is a generic transformation aiming at a goal beyond IND-CCA2, it is out of
scope for the Classic McEliece specification. Error correction is nevertheless recommended
as low-cost protection against this type of fault, even in applications not otherwise concerned
with faults. For devices without ECC DRAM, see [5] for software efficiently encoding and
decoding arbitrary byte arrays using an extended Hamming code.
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6.6 Security against back doors

The area of kleptography studies how to backdoor cryptosystems into leaking information
so that only the holder of some secret back-door key can obtain plaintext from the leaked
information. Typically the software differs dramatically from legitimate software; these back
doors rely on implementations being used as a black box. A straightforward defense is to
check the implementations: specifically, check that open-source software uses a trustworthy
source of randomness, computes exactly the functions specified in the separate “cryptosystem
specification” document, and is compiled by a trustworthy compiler into the binaries that
users are running. Checking the function outputs is not enough: one also has to check
that implementations are not leaking information through timing channels, electromagnetic
channels, sending email to the attacker, etc.

For the case that black-box implementations are used, Young and Yung [67] define two
types of SETUP (Secretly Embedded Trapdoor with Universal Protection): strong and weak
SETUP. A back door is a weak SETUP if it is impossible for anybody but the owner of the
back-door key to determine that the system is backdoored, given just the publicly observable
outputs (public keys, ciphertexts, signatures, timing information) while it is a strong SETUP
if this holds even if the secret inputs and outputs (private keys, plaintexts) are available
additionally.

The paper [40] showed a strong SETUP against a version of McEliece they called Vanilla
McEliece and a weak SETUP against Classic McEliece with uncompressed public keys. The
underlying technique was already mentioned in [36, page 12]: “a malicious permutation-
update mechanism can easily leak secrets through entries of the matrix that it produces as
output”. This SETUP is weak because a backdoored private key (δ, c, g, α′, s) has the field
ordering α′ inconsistent with the seed δ and thus is easily distinguished from a properly
generated key for that δ. Note that checking consistency of α with δ is cheaper than recom-
puting α (see also “Double-checks on private keys” in the separate “guide for implementors”
document).

The paper [40] does not provide any SETUP if the private key is compressed to (δ) or (δ, c)
or (δ, c, g). However, as in other cryptosystems, further SETUPs could exist, so in all cases
it is recommended to check the implementations.
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