Classic McEliece:
conservative code-based cryptography:
design rationale

23 October 2022

Contents

1 One-wayness 2

2 Better efficiency for the same one-wayness 4
2.1 Systematic-form public keys oo 4
2.2 Syndromes as ciphertexts Lo oL Lo)
2.3 Semi-systematic form 5

3 Indistinguishability against chosen-ciphertext attacks 6

4 Generation of random objects 9
4.1 Random objects in Classic McEliece 10
4.2 Compression of private keys oL 11
4.3 Field ordering 12
4.4 TIrreducible polynomial Lo Lo 12
4.5 Fixed-weight vector in encapsulation 0L 13

5 Selected parameter sets 14
5.1 Maximizing security within IMB 000 14
5.2 The robustness of maximizing security 14
5.3 Maximizing security within other size constraints 15
5.4 Possibilities for further parameter sets 16

6 Advantages and limitations 16

References 16

1 One-wayness

There is a long history of trapdoor systems (in modern terminology: PKEs) that are designed
to be one-way (in modern terminology: OW-CPA). One-wayness means that it is difficult
to invert the map from input to ciphertext, given the public key, when the input is chosen
uniformly at random.

The McEliece system is one of the oldest proposals, almost as old as RSA. RSA has suffered
dramatic security losses, while the McEliece system has maintained a spectacular security
track record unmatched by any other proposals for post-quantum encryption. This is the
fundamental reason to use the McEliece system.

Here is more detail to explain what “spectacular security track record” means.

With the key-size optimizations discussed below, the McEliece system uses a key size of
(co+0(1))b*(log, b)? bits to achieve 2 security against all inversion attacks that were known
in 1978, when the system was introduced. Here o(1) means something that converges to 0
as b — 0o, and ¢y =~ 0.7418860694.

The best attack at that time was from 1962 Prange [43]. After 1978 there were 30 publications
studying the one-wayness of the system and introducing increasingly sophisticated non-
quantum attack algorithms:

1981 Clark—Cain [20], crediting Omura.
1988 Lee—Brickell [33].

1988 Leon [34].

1989 Krouk [32].

1989 Stern [46].

1989 Dumer [25].

1990 Coffey-Goodman [21].

1990 van Tilburg [48].

1991 Dumer [26].

1991 Coffey—Goodman—Farrell [22].
. 1993 Chabanne-Courteau [18].

. 1993 Chabaud [19].

. 1994 van Tilburg [49].

. 1994 Canteaut—Chabanne [14].

. 1998 Canteaut—Chabaud [15].

. 1998 Canteaut—Sendrier [16].

B A e

e e e e e T e T
SR O S O =)

17. 2008 Bernstein—Lange—Peters [9].

18. 2009 Bernstein-Lange—Peters—van Tilborg [11].
19. 2009 Finiasz—Sendrier [29].

20. 2011 Bernstein-Lange—Peters [10].

21. 2011 May—Meurer-Thomae [35].

22. 2012 Becker—Joux-May-Meurer [2].

23. 2013 Hamdaoui-Sendrier [31].

24. 2015 May—Ozerov [36].

25. 2016 Canto Torres—Sendrier [47].

26. 2017 Both-May [12].

27. 2018 Both-May [13].

28. 2020 Debris-Alazard-Ducas—van Woerden [24].
29. 2021 Esser-May—Zweydinger [27].

30. 2022 Carrier-Debris-Alazard—Meyer-Hilfiger—Tillich [17].

What is the cumulative impact of all this work? Answer: With the same key-size optimiza-
tions, the McEliece system uses a key size of (co + 0(1))b*(log, b)? bits to achieve 2° security
against all non-quantum attacks known today, where cq is exactly the same constant. All of
the improvements have disappeared into the o(1).

This does not mean that the required key size is precisely the same—that dozens of attack
papers over 40 years have not accomplished anything. What it means is that the required
change in key size is below 1% once b is large enough; below 0.1% once b is large enough;
etc. This is a remarkably stable security story.

What about quantum attacks? Grover’s algorithm is applicable, reducing the attack cost
to asymptotically its square root (essentially the same situation as for strong symmetric-key
ciphers); see generally [4]. In other words, the key now needs (4cy + o(1))b*(log, b)? bits. As
before, further papers on the topic have merely improved the o(1).

The most effective attack strategy known, the central focus of this long list of papers, is
“information-set decoding”. This strategy does not exploit any particular structure of a
matrix G: it recovers a low-weight error vector e given a uniform random matrix G and
Ga + e for some a. Experiments are consistent with the theory that McEliece’s matrices G
behave like uniform random matrices in this context.

There are also many papers studying attacks that instead recover McEliece’s private key—a
polynomial g and distinct elements «, ..., a,—; of a finite field F,—from the public key
G. Recovering the private key also breaks one-wayness, since the attacker can then use the
receiver’s decryption algorithm. These attacks can be much faster than a brute-force search

through private keys: for example, Sendrier’s “support splitting” algorithm [44] quickly finds
Qg, ..., 0,1 given g provided that n = ¢. More generally, whether or not n = ¢, support
splitting finds ag, ..., a,_1 given g and given the set {ag,...,a,—1}. (This can be viewed
as a reason to keep n somewhat smaller than ¢, since then there are many possibilities for
the set, along with many possibilities for g; most of the selected parameter sets provide this
extra defense.) However, despite this and other interesting speedups, the state-of-the-art
key-recovery attacks are vastly slower than information-set decoding.

Various authors have proposed replacing the binary Goppa codes in McEliece’s system with
other families of codes: see, e.g., [1, 3, 37, 41, 42, 38]. Often these replacements are advertised
as allowing smaller public keys. Unfortunately, many of these proposals have turned out to
allow unacceptably fast recovery of the private key (or of something equivalent to the private
key, something that allows fast inversion of the supposedly one-way function). Some small-
key proposals are unbroken, but Classic McEliece uses binary Goppa codes, the traditional,
conservative, well-studied choice.

Authors of attacks on other codes often study the performance of their attacks against
binary Goppa codes. These studies consistently show that McEliece’s system is far beyond
all known attacks. For example, 2013 Faugere-Gauthier-Umana—-Otmani—Perret—Tillich [28]
showed that “high-rate” binary Goppa codes can be distinguished from random codes. The
worst-case possibility is that this distinguisher somehow allows an inversion attack faster
than attacks for random codes. However, the distinguisher stops working

e at 8 errors for n = 1024 (where McEliece’s original parameters used 50 errors),

e at 20 errors for n = 8192 (where the selected parameters use between 96 and 128
errors),

etc. As another example, the attack in [17] saves time for code rates below 0.3; McEliece’s
original parameters used code rate 0.5, and the selected parameters use rates between 0.7
and 0.8. As yet another example, the attack in [23] reaches degree m = 2; McEliece’s original
parameters used degree m = 10, and the selected parameters use degree m = 12 or m = 13.

2 Better efficiency for the same one-wayness

The main focus of Classic McEliece is security, but Classic McEliece also takes reasonable
steps to improve efficiency when this clearly does not compromise security. In particular,
Classic McEliece includes the following three modifications, the first two of which are well
known.

2.1 Systematic-form public keys

The goal of the public key in McEliece’s system is to communicate an [n, k] linear code C
over Fy: a k-dimensional linear subspace of Fy. This means communicating the ability to

generate uniform random elements of C. McEliece accomplished this by choosing the public
key to be a uniform random generator matrix G for C': specifically, multiplying any generator
matrix for C' by a uniform random invertible matrix. A generator matrix G' for C' means a
matrix G € F5** such that C' = {Ga : a € F§}.

The first modification accomplishes this by instead choosing the public key to be the unique
systematic-form generator matrix for C' if one exists. This means a generator matrix of

the form (%) where T' is some (n — k) x k matrix and [is the k£ x k identity matrix.

Approximately 29% of choices of C' have this form, so key generation requires about 3.4
attempts on average, but now the public key occupies only k(n — k) bits instead of kn bits.
Note that sending a systematic-form generator matrix also implies sending a parity-check
matrix H for C, namely (I, | T).

This modification changes security by at most 2 bits. See the separate “guide for security
reviewers” document.

2.2 Syndromes as ciphertexts

McEliece’s ciphertext has the form Ga + e. Here GG is a random n x k generator matrix
for a code C' as above; a is a column vector of length k; e is a weight-¢ column vector of
length n; and the ciphertext is a column vector of length n. McEliece’s inversion problem is
to compute (a,e) given G and the ciphertext Ga + e, where a is a uniform random column
vector of length k; e is a uniform random weight-¢ column vector of length n; and a, e are
independent.

Niederreiter [41] instead suggested a ciphertext of the form He. Here H is a parity-check ma-
trix for C' used as a public key, and e is a weight-¢ column vector of length n, so the ciphertext
is a column vector of length just n — k, shorter than McEliece’s ciphertext. Niederreiter’s
inversion problem is to compute e given H and the ciphertext He, where e is a uniform
random weight-t vector of length n.

This modification makes negligible difference in security. See the separate “guide for security
reviewers” document.

2.3 Semi-systematic form

As a generalization (introduced by Chou) of the idea of systematic form, consider any key
obtained as follows:

e Starting from the secret parity-check matrix for the code C', compute the unique parity-
check matrix in reduced row-echelon form.

e Start over with a new code if this matrix is not acceptable. This generalization is
parameterized by the definition of acceptability: e.g., one can define an acceptable
matrix as a matrix in (u, v)-semi-systematic form.

e Permute the matrix columns to reach systematic form, while permuting the code ac-
cordingly. This requires all acceptable matrices to have full rank.

It is important here for the second and third steps to depend only on the reduced row-echelon
form. This guarantees that any attack against the resulting public key can be converted into
an attack against McEliece’s public key: anyone can convert McEliece’s public key into the
parity-check matrix in reduced row-echelon form, and then follow the second and third steps.

Accepting only systematic-form matrices—i.e., (0, 0)-semi-systematic-form matrices—is the
simplest possibility, making implementations as easy as possible to write and audit. One
can argue that accepting more matrices produces a tighter security proof, but the original
tightness loss was at most 2 bits. The primary argument for accepting more matrices is
a performance argument, namely that this increases the success probability of each key-
generation attempt.

Accepting any full-rank matrix maximizes the success probability. On the other hand, the
analysis in [30] suggests that constant-time implementations of the first step will then be
very slow. Presumably this means that the overall key-generation time will be slower on
average, despite the improved success probability.

The concept of (u, v)-semi-systematic form is designed to take both the time and the success
probability into account. Compared to (u,v) = (0,0), a small increase in p and v —
reduces and stabilizes the number of key-generation attempts. It is reasonable to estimate,
for example, that (u,rv) = (32,64) reduces the failure probability of each attempt below
2739 5o most of the time one needs only 1 key-generation attempt. This attempt requires
extra work for a constant-time echelon-form computation, but only within v columns, which
is not a large issue when v is kept reasonably small.

Classic McEliece continues to include (0,0)-semi-systematic-form computations for three
reasons. First, the Classic McEliece software also speeds up those computations, skipping
most of the work in Gaussian elimination in the failure cases and thus reducing the average
key-generation time. Second, applications where key generation is not a bottleneck do not
need the speedups from (32, 64)-semi-systematic form. Third, there is value in simplicity.

3 Indistinguishability against chosen-ciphertext at-
tacks

Assume that McEliece’s system is one-way. Niederreiter’s system is then also one-way: the
attacker, given Niederreiter’s public key H and the ciphertext He for a uniform random
weight-t vector e, cannot efficiently compute e.

What the user actually needs is more than one-wayness. The user is normally sending a
plaintext with structure, perhaps a plaintext that can simply be guessed. Furthermore, the
attacker can try modifying ciphertexts to see how the receiver reacts. McEliece’s original
PKE was not designed to resist, and does not resist, such attacks. In modern terminology,

the user needs IND-CCA2 security.

There is a long literature studying the IND-CCA2 security of various PKE constructions,
and in particular constructions built from an initial PKE assumed to have OW-CPA secu-
rity. An increasingly popular simplification here is to encrypt the user’s plaintext with an
authenticated cipher such as AES-GCM. The public-key problem is then simply to send an
unpredictable session key to use as the cipher key. Formally, the design goal here is to build a
KEM with IND-CCA2 security; “KEM-DEM” composition [45] then produces a PKE with
IND-CCA2 security, assuming a secure DEM. More complicated PKE constructions can
pack some plaintext bytes into the ciphertext but are more difficult to audit and would be
contrary to the Classic McEliece goal of producing high confidence in security.

The Classic McEliece KEM construction follows the best practices established in the litera-
ture:

e (Classic McEliece uses a uniform random PKE input e, and computes the session key
as a hash of e.

e After using the private key to compute e from a ciphertext, the Classic McEliece
decapsulation algorithm checks that reencrypting e matches the ciphertext.

e If decryption fails (i.e., if computing e fails or reencryption does not match), Classic
McEliece does not return a KEM failure: instead it returns a pseudorandom function
of the ciphertext, specifically a cryptographic hash of a separate private key and the
ciphertext.

Classic McEliece uses a standard, thoroughly studied cryptographic hash function, and en-
sures that the two hashes mentioned above are obtained by applying this function to input
spaces that are visibly disjoint. The input details are chosen to simplify implementations
that run in constant time, in particular not leaking whether decryption failed.

The fact that the underlying PKE is deterministic enables tight proofs of ROM IND-CCA2
security and even QROM IND-CCA2 security for this KEM construction, assuming one-
wayness of the PKE. See the separate “guide for security reviewers” document. The fact
that decryption always works for legitimate ciphertexts simplifies the proofs.

IND-CCA2 for encodings. Ciphertexts are normally encoded as byte strings and then
further encoded as objects in higher-level protocols. Encodings in network protocols and in
other applications are, in general, not unique: there are many objects that will decode to
the same ciphertext.

Shoup [45] refers to this non-uniqueness property as “benign malleability”. It is possible to
construct applications where this property loses security. There is a debate in the literature
as to whether this should be addressed

e in applications, by the rule of acting on encoded ciphertexts solely by decoding and
decapsulating them, or

e in decoders, by the rule of enforcing unique encodings for ciphertexts.

A reencoding wrapper converts a deterministic decoder (and deterministic encoder) into a
decoder following the second rule, by rejecting any encoded ciphertext C' different from the
encoding of the decoding of C'. A similar wrapper that rewrites ciphertexts, without rejecting
them, converts an application into an application following the first rule.

Given any encoding, one can extend the definition of IND-CCA2 for ciphertexts into a
definition of IND-CCA2 for encoded ciphertexts. The rule of enforcing unique encodings
makes the second definition equivalent to the first. The rule of acting on encoded ciphertexts
solely by decoding and decapsulating them makes the second definition unnecessary.

Encodings as byte strings are within the scope of Classic McEliece. To provide clarity
for applications that want to enforce unique encodings as byte strings, the specification
distinguishes between

e Narrowly Decoded Classic McEliece, which requires padding bits (not just for encoded
ciphertexts but also for encoded public keys) to be 0 on decoding, and

e Simply Decoded Classic McEliece, which ignores padding bits on decoding.

A wrapper that requires the padding bits to be 0 converts an implementation of Simply
Decoded Classic McEliece into an implementation of Narrowly Decoded Classic McEliece.
A wrapper that clears the padding bits converts an implementation of Narrowly Decoded
Classic McEliece into an implementation of Simply Decoded Classic McEliece.

Simply Decoded Classic McEliece and Narrowly Decoded Classic McEliece are equivalent for
the selected non-6960 parameter sets, since only the 6960 parameter sets use padding bits.
For the 6960 parameter sets, the Classic McEliece software implements Narrowly Decoded
Classic McEliece by checking the appropriate bits of public keys and ciphertexts. This check
is handled in constant time, for applications where “public” keys and ciphertexts are actually
confidential (e.g., obtained as outputs of another layer of decryption). In case applications
fail to check return values, the encapsulation software sets all bits to 0 in its ciphertext and
session-key output buffers in case of bad padding, and the decapsulation software sets all
bits to 1 in its session-key output buffer in case of bad padding. The difference between
0 and 1 here is designed so that a cascade of several possible failures (bad padding in a
public key, ignoring the encapsulation failure, bad padding in a ciphertext, and ignoring the
decapsulation failure) will produce two different session keys that will not interoperate in
typical DEMs, increasing the chance of the failures being caught by tests.

Security goals beyond IND-CCAZ2. The literature contains many other extensions of
IND-CCA2. There are arguments that the extended properties are easy for cryptosystems
to achieve and can protect applications. There are counterarguments saying that the same
security can be achieved in a simpler way by another layer of the system. Consider, e.g.,
Shoup’s argument in [45, Section 3.3] that KEMs should avoid hashing “labels” such as
identities since “it is easier to implement labels in the data encapsulation mechanism”.

Classic McEliece follows the principle that any generic transformation aiming at a goal
beyond IND-CCA2 is out of scope for a KEM specification. Factoring the transformation

out of KEM specifications simplifies the cryptographic ecosystem, making design and review
easier, because the transformation is modularized instead of being handled redundantly by
each cryptosystem. Each component is simpler, without any change in the composition
provided to the end user.

One could extend the principle to say that generic conversions from from OW-CPA to IND-
CCA2 should be factored out of cryptosystem specifications. Note, however, that the Classic
McEliece conversion from OW-CPA to IND-CCA2 is not generic Fujisaki-Okamoto: it uses
cryptosystem-specific modifications for extra efficiency, in particular avoiding any need to
store the public key inside the private key. The output is always the same, so IND-CCA2
security is guaranteed to be the same, but the data flow and specification are different.

Here are examples of obvious properties of Classic McEliece that have no effect on the IND-
CCA2 security goal but that can affect other goals: private keys are malleable (because of
padding bits, multiple sequences of control bits that represent the same permutation, unused
a values for n < ¢, etc.); modifying one bit in a public key has a significant chance of not
affecting any particular ciphertext; various linear-algebra operations on public keys have
predictable effects on ciphertexts; the first n — k bits of a plaintext for the internal PKE
are simply added to the ciphertext. Application designers are encouraged to assume solely
the standard IND-CCAZ2 property, and in any case to be clear regarding the properties that
they assume.

4 Generation of random objects

A widely deployed RSA prime-generation algorithm was broken by ROCA [40]. Nothing
was shown to be wrong with the underlying source of random bytes, or the primality of each
output p, or the interval containing p, or the entropy of p, namely 256 bits. The problem
was that, for efficiency, the algorithm generated primes with a special structure that could
be exploited by the attacker.

This algorithm was compliant with RSA specifications that asked for “random” primes p
in an interval. RSA specifications that asked for “uniform random” primes p in an interval
would have prohibited this algorithm, but also would have prohibited almost all RSA im-
plementations: any PRNG converting (say) 256 bits of entropy into a 1024-bit prime p is
producing a non-uniform output distribution.

PRNGs are good for testability, so standards should allow cryptographic modules to generate
a prime p from a PRNG. How does the cryptographic module validator assess whether the
prime p is sufficiently random?

If RSA security reviewers have considered uniform random private keys (p, ¢), then there is
no loss of security from any distribution of (p, ¢) that is indistinguishable from uniform. It
therefore suffices for the validator to ask whether the algorithm to generate (p, q) is generating
a distribution indistinguishable from uniform. A weaker divergence property (see, e.g., [5])
suffices for “search” security properties such as signature security and OW-CPA.

The standard PRNG objective is to generate a byte string indistinguishable from a uniform
random byte string. This is analogous to generating primes indistinguishable from uniform
random primes, but it is not the same. To close the gap, some standards specify algorithms
to deterministically convert byte strings into private keys (p,q); see, e.g., [39, Appendix
B.3.3]. The security goal for such an algorithm is to convert a uniform random byte string
into (p, ¢) indistinguishable from uniform. If the algorithm meets this goal, and is applied to
a byte string indistinguishable from uniform, then it produces (p, q) indistinguishable from
uniform. A weaker divergence property again suffices for some applications.

This structure means that there is a process of specifying, reviewing, and approving algo-
rithms to generate RSA keys: not just tests for primality, but complete algorithms to convert
random bytes into private keys. The cryptographic module validator checks whether the im-
plementation is using an approved private-key-generation algorithm and an approved source
of random bytes.

4.1 Random objects in Classic McEliece

The same issues arise in post-quantum cryptography. In particular, key generation in the
Model Classic McEliece KEM (see the separate “guide for security reviewers” document),
defined using MODELKEYGEN, asks for a uniform random sequence (ag,...,a,_1) of n
distinct elements of F,, and a uniform random monic irreducible polynomial g of degree
t. Even if an implementation is using an approved source of random bytes, how does the
cryptographic module validator assess whether an implementation is generating a sufficiently
random sequence (ag, ..., a,_1) and a sufficiently random g7

To answer these questions, the specification defines deterministic algorithms IRREDUCIBLE
and FIELDORDERING designed to convert uniform random byte strings into sufficiently
random g and («v, . . ., ay—1) respectively, and on top of this defines a deterministic algorithm
SEEDEDKEYGEN that converts a 32-byte seed into a private key. KEYGEN for the Classic
McEliece KEM is then defined to apply SEEDEDKEYGEN to a uniform random 32-byte seed.

Specifying MODELKEYGEN gives a simple definition of the Model Classic McEliece KEM
for review of the IND-CCAZ2 security property. A separate review of the relationship between
KEYGEN and MODELKEYGEN then transports the IND-CCA2 security property from the
Model Classic McEliece KEM to the Classic McEliece KEM. The cryptographic module
validator then checks that an implementation is correctly implementing SEEDEDKEYGEN
and is starting from an approved source of 32 random bytes for KEYGEN.

This structure is compatible with specifying, reviewing, and approving future alternatives
to SEEDEDKEYGEN, for example because performance analysis finds faster secure key-
generation methods.

10

4.2 Compression of private keys

Classic McEliece private keys are much smaller than public keys, but there may be interest
in compressing them further.

The KEYGEN structure explained above, deterministically mapping a 32-byte seed to a
private key, implies that a private key can be compressed to these 32 bytes. Uncompression
then means running SEEDEDKEYGEN again. Various details of SEEDEDKEYGEN, and of
the private-key format, are designed to support a slightly different compression mechanism
for which uncompression is much faster than key generation.

The main bottleneck in key generation is reducing a parity-check matrix to systematic form
(or semi-systematic form), and starting over with a new key-generation attempt if the matrix
reduction fails. However, as explained earlier, the resulting public key is not needed for de-
capsulation. The data flow from the matrix reduction to the private key consists solely of (1)

knowing whether (g, ap, . . ., a,_1) has been rejected and (2) a permutation of (ayp, ..., a,_1)
into (oy),...,a,_;) for the generalization to semi-systematic form.

SEEDEDKEYGEN starts with a seed § and deterministically maps d to (g, g, ..., @,_1,9).
If (g,0,...,q, 1) is rejected, SEEDEDKEYGEN replaces § with ¢’ and starts over. This

structure supports a compression mechanism that stores the final seed, a seed known to pass
the rejection-sampling process, rather than the initial seed. Uncompression then simply
maps the final seed § to the final (g, ag, ..., a,_1), without any matrix operations.

For the generalization to semi-systematic form, uncompression needs to compute
(g, ..., 1), not just (ag, ..., an—1). The permutation of (o, ..., a,—1) into (ag, ..., al,_;)

is fully specified by a v-bit string of weight 1 encoding ¢ = (¢ni—p, - - - Cmi—1): €.8., a 64-bit
string of weight 32 when (p,v) = (32,64).

The objects (4,¢,g,,s) are organized in a private key so that four natural compression
mechanisms each consist of simple truncation:

e Truncation to (9, ¢, g, «) saves [n/8] bytes in the private key, and regenerating s from
d requires simply (the first) [n/8] bytes of SHAKE256 output.

e Truncation to (, ¢, g) requires more work to regenerate v but saves much more space.

e Truncation to (d,c) requires a minimal-polynomial computation to regenerate g but
compresses to just 40 bytes.

e Truncation to the 32-byte seed ¢ suffices for systematic form.

One could encode ¢ as 0 bytes for systematic form. The specified encoding instead uses
8 bytes so that a systematic-form private key can also be used by implementations that
expect a semi-systematic-form private key. This avoids the need for key-format specifications
to distinguish systematic form from semi-systematic form when all other parameters are
the same: systematic-form private keys are simply the special case of semi-systematic-form
private keys in which these 8 bytes are (255,255, 255,255, 0, 0,0, 0).

The private key is specified to record an ordering (ag, ..., o), _, an, ..., o4—1) of the field F,

11

as a sequence of control bits for a Benes network. Most of the selected parameters have
n < ¢, and no use is made of (o, ...,a, 1), so another way to save space is to list just
(g, ..., ;). One can apply the corresponding permutation by sorting, which is slower
than a Benes network but avoids the need to compute control bits. One can also apply the
corresponding permutation through RAM lookups, but implementors are cautioned that this
leaks information through timing on many platforms. Specifying control bits as the default
representation of o has the advantage of encouraging constant-time implementations. All
implementations should be reviewed for timing leaks and other applicable side-channel leaks
in any case.

4.3 Field ordering

The FIELDORDERING algorithm interprets a uniform random 4¢-byte input string as a
uniform random sequence of 32-bit integers ag, a1, ..., a,—1. This sequence is rejected if and
only if it contains fewer than ¢ distinct elements. The sequence is accepted with probability
(1—1/2%)(1—-2/2%)---(1—(¢—1)/2%%), which is more than 0.99 if ¢ < 2! and more than
0.6 if ¢ < 2. (This description focuses on the choice oy = 32. Parameters with ¢ > 26
would take more than 32 bits in each integer by definition of o9, so the acceptance probability
would still be more than 0.6.)

An accepted sequence is a uniform random sequence of distinct 32-bit integers ag, a1, . . ., @g—1.
There is then a unique permutation that sorts (ag, a1, ..., a,—1), and the output is the same
permutation applied to an initial ordering of F,. The permutation is a uniform random
permutation, so the output is a uniform random ordering of IF,.

Omitting the rejection would produce a permutation distinguishable from uniform, but would
still suffice for almost exactly the same OW-CPA security level by a divergence argument.

See [5].

4.4 Irreducible polynomial

The IRREDUCIBLE algorithm extracts mt input bits from a uniform random 2¢-byte input
string, and interprets the mt bits as a uniform random element 3 of F [y]/F(y). The al-
gorithm returns the minimal polynomial g of 8 over F, if g has degree ¢; otherwise it fails.
(This description focuses on the choice o = 16, with m < 16.)

Any particular monic irreducible degree-t polynomial g has exactly ¢ roots in F [y|/F(y),
and is thus found by exactly ¢t of the 2™ possibilities for 3, i.e., exactly 26~ of the
possibilities for the 16¢-bit input string. The distribution of g is thus uniform. Uniformity
is again overkill here: having low divergence would suffice.

Well-known formulas for the number of irreducible polynomials (equivalently, the observation
that the algorithm fails exactly when /3 is in a proper subfield of F,[y]/F (y)) imply that this
algorithm succeeds with probability more than 99% when ¢ > 16.

12

4.5 Fixed-weight vector in encapsulation

MODELENCAP begins by generating a uniform random n-bit vector of weight ¢. This again
raises a question for cryptographic module validators regarding how these vectors are gen-
erated. ENCAP instead calls FIXEDWEIGHT, which calls a traditional RNG that produces
a stream of bits.

Applications might plug in an RNG that generates output from a series of seeds as in key
generation, allowing a ciphertext to be compressed to the final seed. See, e.g., [8]. The same
compression approach works for rejection sampling in much more generality.

FIXEDWEIGHT generates a uniform random n-bit vector e = (eg,eq,...,e,-1) of weight
t by generating a uniform random sequence (ag,aq,...,a;—1) of t distinct integers in
{0,1,...,n — 1}, and using those integers as the support of e.

FIXEDWEIGHT generates this uniform random sequence by generating a uniform random se-
quence (ag, ay, ..., a;—1) of integers in {0,1,...,n — 1}, and then starting over if the integers
are not distinct. Each try succeeds with probability (1 — 1/n)(1 —2/n)---(1 — (t —1)/n),
which is above 1/4 for each of the selected parameter sets. (The alternative e-generation
method in [5] guarantees its run time, but FIXEDWEIGHT is essentially always faster.)

Generating a uniform random sequence (ag, ay,...,a;—1) of integers in {0,1,...,¢— 1} is a
simple matter of collecting uniform random bits. For n < ¢, one well-known way to generate
a uniform random stream of integers in {0, 1,...,n — 1} is by rejection sampling on a uniform
random stream of integers in {0,1,...,¢ — 1}. If n is below ¢/2 then it is more efficient to
begin with integers in {0, 1,...,¢/2 — 1}, and similar comments apply if n is below ¢/4 etc.,
but FIXEDWEIGHT skips these refinements since all of the selected parameters have n > ¢/2.

FIXEDWEIGHT uses a batch of 7 integers in {0, 1,...,¢ — 1}, and applies rejection sampling
to generate a batch of integers in {0,1,...,n — 1}, say u integers, where u is between 0 and
7. For each u, the integers in {0, 1,...,n — 1} are uniform. Consequently, if u > ¢, the first ¢
integers in {0, 1,...,n — 1} are uniform as desired. Batch processing simplifies parallelization
and vectorization, and some standard RNGs are much more efficient at generating a large
batch of random bits than at generating the same volume of data in small chunks.

The probability of u > t is the sum of the coefficients of 2, '™, ... 2" in (1—-n/q+(n/q)z)".
This probability is above 0.96 for (m,n,t) = (13,4608, 96), and much closer to 1 for the other
selected parameters.

There would be a slight savings in time from reducing 7 below 2¢. With smaller batch sizes it
would also save time to handle the case u < t differently: instead of discarding the u integers
already found in {0,1,...,n — 1}, keep those integers and use the next batch to extend
the list of integers. This would reduce the number of iterations required, at the expense of
tracking state between iterations. As long as the selection process sees only whether integers
are in {0,1,...,n — 1} or not, the resulting integers in {0,1,...,n — 1} are uniform.

13

5 Selected parameter sets

The Classic McEliece parameter space naturally allows a wide range of choices of the field
size ¢, the code length n, and the number of errors t. This raises the question of how to
choose parameters.

5.1 Maximizing security within 1MB

The selected Classic McEliece parameters have always been chosen to maximize security
subject to size constraints.

This implies, as a preliminary matter, the traditional choice of m = log, ¢ as [log, n]. Then
n and ¢ dictate the code dimension (namely k& = n — mt; Goppa codes of other dimensions
can occur, but are extremely rare, and are rejected by the key-generation process), the
number of ciphertext bits (namely n — k = mt), and the number of public-key bits (namely
k(n — k) = kmt), along with security levels.

In particular, the 6960119 parameter set, with (n,t) = (6960, 119), is chosen to maximize
security for public keys fitting into 2%° bytes. The choice n = 6960 goes back to [9, Section
7], which documents this choice as maximizing security subject to the 220-byte size limit:

For keys limited to 2'¢ 217 218 219 920 hytes we propose Goppa codes of
lengths 1744, 2480, 3408, 4624, 6960 and degrees 35,45,67,95,119 respectively,
with 36,46, 68,97,121 errors added by the sender. These codes achieve secu-
rity levels 84.88,107.41,147.94,191.18,266.94 against our attack. In general, for
any particular limit on public-key size, codes of rate approximately 0.75 appear
to maximize the difficulty of our attack.

The only difference between the choice in [9] and the specified 6960119 parameter set is that
Classic McEliece adds 119 errors instead of 121 errors; this is structurally required because
Classic McEliece does not include the complications of “list decoding”. This marginally
reduces the security level.

5.2 The robustness of maximizing security

Choosing parameter sets to maximize security subject to a specified size constraint is much
more robust than choosing parameter sets to minimize size for a specific target security level.

The issue here is that there are variations in exactly how the literature measures security,
partly because of small attack improvements over many years and partly because of different
models for the costs of operations inside attacks. See, e.g., Table 1 in the separate “guide for
security reviewers” document. A parameter set chosen to exactly match a particular security
level in one metric is likely to be overkill in another metric and too small in a third metric.

14

These variations turn out to have much less impact on parameter sets chosen to maximize
security level for a specified size. Occasionally two nearby parameter sets have very close
security levels and will vary in ordering depending on exactly which metric is chosen, but
the closeness also means that the exact choice between these parameter sets does not matter
for the user.

5.3 Maximizing security within other size constraints

The nearby parameter set 6688128 is also chosen to maximize security for public keys fitting
into 220 bytes, but with the following extra size constraints: n is a multiple of 32, and ¢ is a
multiple of 32.

Requiring multiples of 32 generally produces worse tradeoffs between size and security in
various metrics, but only slightly worse, as illustrated by [30, Figure 11.1]. Meanwhile this
slightly simplifies implementations. In particular, there are no padding bits in the encodings
of public keys and ciphertexts, so IND-CCA2 for ciphertexts automatically implies IND-
CCA2 for encoded ciphertexts; the distinction between Simply Decoded Classic McEliece
and Narrowly Decoded Classic McEliece (see Section 3) disappears.

The larger 8192128 parameter set puts heavier constraints on the sizes n and ¢, both being
powers of 2, limiting the available choices of security levels and key sizes. One can argue
that n should always be taken as ¢, a power of 2, since this is what McEliece’s original
cryptosystem did; however, the safety of n < ¢ can be deduced from the safety of n = ¢q. See
“OW-CPA security of length below field size” in the separate “guide for security reviewers”
document.

The smaller parameter sets 348864 and 460896 were chosen the same way as 6688128,
except with key-size limits of 2'® bytes and 2! bytes respectively instead of 2%° bytes. These
three parameter sets were introduced in 2019 in [7], which documented the choice of these
parameter sets as maximizing security subject to these size limits. To quote [7]:

We are therefore expanding the list of parameter sets (n, k,t) as follows:
e (8192,6528,128), 240-byte ciphertexts: taking both n and ¢ to be powers of

2; as in round-1 submission.

(6960, 5413, 119), 226-byte ciphertexts: optimal security within 2% bytes for
public key; as in round-1 submission.

6688, 5024, 128), 240-byte ciphertexts: optimal security within 22° bytes if
(y y y
n and t are required to be multiples of 32.

(4608, 3360, 96), 188-byte ciphertexts: optimal security within 219 bytes if n
and t are required to be multiples of 32.

(3488, 2720, 64), 128-byte ciphertexts: optimal security within 2!8 bytes if n
and t are required to be multiples of 32.

15

5.4 Possibilities for further parameter sets

The powers of 2 chosen above (e.g., 22° bytes as a key-size limit, or ¢ being a multiple of
32) are not required by the design of Classic McEliece. The primary argument for taking
powers of 2 is simplicity. Even when there is no impact on implementations, a rule of pre-
ferring simpler parameter descriptions helps limit opportunities for attackers to manipulate
parameter choices; see generally [6].

It would be straightforward to generate intermediate parameter sets: for example, parameter
sets strictly between 2'® bytes and 2'? bytes for the corner case of an application that (1) can
afford 348864, (2) cannot afford 460896, and (3) wants a higher security level than 348864.
However, the benefits of providing such options need to be weighed against the simplicity
argument from the previous paragraph.

Another option is to choose parameters that maximize security for a ciphertext-size limit
rather than for a key-size limit. This generally means taking smaller values of ¢, possibly in
the range where [28] can distinguish public keys from uniform random matrices. This option
would not necessarily damage IND-CCA2 security, but it would complicate the security
analysis.

6 Advantages and limitations

The most important advantage of the McEliece system is security, covered throughout this
document and the separate “guide for security reviewers” document.

Regarding efficiency, the use of random-looking linear codes with no visible structure forces
public-key sizes to be on the scale of a megabyte for quantitatively high security: the public
key is a full (generator/parity-check) matrix. Key-generation software is also not very fast.
Applications must continue using each public key for long enough to handle the costs of
generating and distributing the key.

There are, however, some compensating efficiency advantages. Encapsulation takes a single
pass over a public key, so one can stream public keys through tiny coprocessors and tiny
devices, taking advantage of the simple nature of the objects (binary vectors) and operations
(binary dot products). Encapsulation and decapsulation are reasonably fast in software, and
impressively fast in hardware. See the separate “guide for implementors” document for
speeds of all operations.

Furthermore, the ciphertexts are unusually small for post-quantum cryptography: under 256
bytes for the selected high-security parameter sets. This allows ciphertexts to fit comfortably
inside single network packets. In applications that transmit enough ciphertexts per key, the
disadvantage of large public keys is outweighed by the advantage of small ciphertexts: Classic
McEliece has the lowest per-ciphertext cost of any post-quantum system.

16

References

1]

Marco Baldi, Franco Chiaraluce, Roberto Garello, and Francesco Mininni. Quasi-cyclic
low-density parity-check codes in the McEliece cryptosystem. In Proceedings of IEEE In-
ternational Conference on Communications, ICC 2007, Glasgow, Scotland, 24-28 June
2007, pages 951-956. IEEE, 2007. https://doi.org/10.1109/ICC.2007.161.

Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random
binary linear codes in 2*/?°: How 1+ 1 = 0 improves information set decoding. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology—FEUROCRYPT
2012—31st Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237
of Lecture Notes in Computer Science, pages 520-536. Springer, 2012. https://wuw.
cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/isd-extended.pdf.

Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub Otmani. Re-
ducing key length of the McEliece cryptosystem. In Bart Preneel, editor, Progress
in Cryptology—AFRICACRYPT 2009, Second International Conference on Cryptol-
ogy in Africa, Gammarth, Tunisia, June 21-25, 2009. Proceedings, volume 5580 of
Lecture Notes in Computer Science, pages 77-97. Springer, 2009. https://hal.
archives-ouvertes.fr/hal-01081727/file/ACTI-BERGER-2009-2.pdf.

Daniel J. Bernstein. Grover vs. McEliece. In Nicolas Sendrier, editor, Post-Quantum
Cryptography, Third International Workshop, PQCrypto 2010, Darmstadt, Germany,
May 25-28, 2010. Proceedings, volume 6061 of Lecture Notes in Computer Science,
pages 73-80. Springer, 2010. https://cr.yp.to/papers.html#grovercode.

Daniel J. Bernstein. Divergence bounds for random fixed-weight vectors obtained by
sorting, 2018. https://cr.yp.to/papers.html#divergence.

Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas Hiilsing, Eran
Lambooij, Tanja Lange, Ruben Niederhagen, and Christine van Vredendaal. How to
manipulate curve standards: A white paper for the black hat. In Liqun Chen and
Shin’ichiro Matsuo, editors, Security Standardisation Research—Second International
Conference, SSR 2015, Tokyo, Japan, December 15-16, 2015, Proceedings, volume 9497
of Lecture Notes in Computer Science, pages 109-139. Springer, 2015. https://badab5.
cr.yp.to.

Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki,
Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nicolas
Sendrier, Jakub Szefer, and Wen Wang. Classic McEliece: conservative code-based cryp-
tography: modifications for round 2, 2019. https://classic.mceliece.org/nist/
mceliece-20190331-mods.pdf.

Daniel J. Bernstein and Tanja Lange. McTiny: Fast high-confidence post-quantum key
erasure for tiny network servers. In Srdjan Capkun and Franziska Roesner, editors,

17

https://doi.org/10.1109/ICC.2007.161
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/isd-extended.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/isd-extended.pdf
https://hal.archives-ouvertes.fr/hal-01081727/file/ACTI-BERGER-2009-2.pdf
https://hal.archives-ouvertes.fr/hal-01081727/file/ACTI-BERGER-2009-2.pdf
https://cr.yp.to/papers.html#grovercode
https://cr.yp.to/papers.html#divergence
https://bada55.cr.yp.to
https://bada55.cr.yp.to
https://classic.mceliece.org/nist/mceliece-20190331-mods.pdf
https://classic.mceliece.org/nist/mceliece-20190331-mods.pdf

[10]

[11]

[12]

[13]

[14]

[15]

[16]

29th USENIX Security Symposium, USENIX Security 2020, August 1214, 2020, pages
1731-1748. USENIX Association, 2020. https://mctiny.org.

Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending
the McEliece cryptosystem. In Johannes A. Buchmann and Jintai Ding, editors, Post-
Quantum Cryptography, Second International Workshop, PQCrypto 2008, Cincinnati,
OH, USA, October 17-19, 2008, Proceedings, volume 5299 of Lecture Notes in Computer
Science, pages 31-46. Springer, 2008. https://eprint.iacr.org/2008/318.

Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding exponents:
Ball-collision decoding. In Phillip Rogaway, editor, Advances in Cryptology—CRYPTO
2011—381st Annual Cryptology Conference, Santa Barbara, CA, USA, August 1/-18,
2011. Proceedings, volume 6841 of Lecture Notes in Computer Science, pages 743-760.
Springer, 2011. https://eprint.iacr.org/2010/585.

Daniel J. Bernstein, Tanja Lange, Christiane Peters, and Henk C. A. van Tilborg.
Explicit bounds for generic decoding algorithms for code-based cryptography. In Pre-
proceedings of WCC 2009, pages 168-180, 2009.

Leif Both and Alexander May. Optimizing BJMM with nearest neighbors: Full decoding
in 22*/2! and McEliece security, 2017. International Workshop on Coding and Cryptog-
raphy (WCC 2017). https://www.cits.ruhr-uni-bochum.de/imperia/md/content/
may/paper/bjmm+. pdf.

Leif Both and Alexander May. Decoding linear codes with high error rate and its im-
pact for LPN security. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum
Cryptography—9th International Conference, PQCrypto 2018, Fort Lauderdale, FL,
USA, April 9-11, 2018, Proceedings, volume 10786 of Lecture Notes in Computer Sci-
ence, pages 25-46. Springer, 2018. https://eprint.iacr.org/2017/1139.

Anne Canteaut and Herve Chabanne. A further improvement of the work factor in an
attempt at breaking McEliece’s cryptosystem. In Pascale Charpin, editor, Livre des
résumés—EUROCODE 9/, Abbaye de la Bussiére sur Ouche, France, October 199/,
1994. https://hal.inria.fr/inria-00074443.

Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-weight
words in a linear code: Application to McEliece’s cryptosystem and to narrow-
sense BCH codes of length 511. [IEEE Trans. Information Theory, 44(1):367—
378, 1998. https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/
Canteaut_Chabaud98.pdf.

Anne Canteaut and Nicolas Sendrier. Cryptanalysis of the original McEliece cryptosys-
tem. In Kazuo Ohta and Dingyi Pei, editors, Advances in Cryptology—ASIACRYPT
98, International Conference on the Theory and Applications of Cryptology and In-
formation Security, Beijing, China, October 18-22, 1998, Proceedings, volume 1514
of Lecture Notes in Computer Science, pages 187-199. Springer, 1998. https://www.
rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Sendrier98.pdf.

18

https://mctiny.org
https://eprint.iacr.org/2008/318
https://eprint.iacr.org/2010/585
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/bjmm+.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/bjmm+.pdf
https://eprint.iacr.org/2017/1139
https://hal.inria.fr/inria-00074443
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Chabaud98.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Chabaud98.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Sendrier98.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Sendrier98.pdf

[17]

[20]

[21]

[22]

Kevin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, and Jean-Pierre Tillich.
Statistical decoding 2.0: Reducing decoding to LPN. CoRR, abs/2208.02201, 2022.
https://doi.org/10.48550/arXiv.2208.02201.

Herve Chabanne and Bernard Courteau. Application de la méthode de décodage
itérative d’Omura a la cryptanalyse du systeme de McEliece, 1993. Université de Sher-
brooke, Rapport de Recherche, number 122.

Florent Chabaud. Asymptotic analysis of probabilistic algorithms for finding short
codewords. In Paul Camion, Pascale Charpin, and Sami Harari, editors, Furocode ’92:
proceedings of the international symposium on coding theory and applications held in
Udine, October 23-30, 1992, pages 175-183. Springer, 1993.

George C. Clark, Jr. and J. Bibb Cain. Error-correcting coding for digital communica-
tion. Plenum, 1981.

John T. Coffey and Rodney M. Goodman. The complexity of information set decoding.
IEEE Transactions on Information Theory, 35:1031-1037, 1990.

John T. Coffey, Rodney M. Goodman, and P. Farrell. New approaches to reduced
complexity decoding. Discrete and Applied Mathematics, 33:43-60, 1991. https://
core.ac.uk/reader/81155220.

Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. Polynomial time attack on
Wild McEliece over quadratic extensions. IEEE Trans. Information Theory, 63(1):404—
427, 2017. https://eprint.iacr.org/2014/112.

Thomas Debris-Alazard, Léo Ducas, and Wessel P. J. van Woerden. An algorithmic
reduction theory for binary codes: LLL and more. IEEE Trans. Inf. Theory, 68(5):3426—
3444, 2022. https://eprint.iacr.org/2020/869.

Ilya I. Dumer. Two decoding algorithms for linear codes. Problemy Peredachi Infor-
matsii, 25:24-32, 1989. http://www.mathnet.ru/eng/ppi635.

Ilya I. Dumer. On minimum distance decoding of linear codes. In Grigori A. Kabatian-
skii, editor, Fifth joint Soviet-Swedish international workshop on information theory,
Moscow, 1991, pages 50-52, 1991.

Andre Esser, Alexander May, and Floyd Zweydinger. McEliece needs a break—
solving McEliece-1284 and Quasi-Cyclic-2918 with modern ISD. In Orr Dunkelman
and Stefan Dziembowski, editors, Advances in Cryptology—EUROCRYPT 2022—/j1st
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Trondheim, Norway, May 30-June 3, 2022, Proceedings, Part III, vol-
ume 13277 of Lecture Notes in Computer Science, pages 433—457. Springer, 2022.
https://eprint.iacr.org/2021/1634.

Jean-Charles Faugere, Valérie Gauthier-Umana, Ayoub Otmani, Ludovic Perret, and
Jean-Pierre Tillich. A distinguisher for high-rate McEliece cryptosystems. IEEE Trans.
Information Theory, 59(10):6830-6844, 2013. https://eprint.iacr.org/2010/331.

19

https://doi.org/10.48550/arXiv.2208.02201
https://core.ac.uk/reader/81155220
https://core.ac.uk/reader/81155220
https://eprint.iacr.org/2014/112
https://eprint.iacr.org/2020/869
http://www.mathnet.ru/eng/ppi635
https://eprint.iacr.org/2021/1634
https://eprint.iacr.org/2010/331

[29]

[31]

[32]

[33]

[36]

[37]

Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based
cryptosystems. In Mitsuru Matsui, editor, Advances in Cryptology—ASIACRYPT
2009, 15th International Conference on the Theory and Application of Cryptology
and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume
5912 of Lecture Notes in Computer Science, pages 88-105. Springer, 2009. https:
//eprint.iacr.org/2009/414.

Classic McEliece Comparison Task Force. Classic McEliece vs. NTS-KEM. 2018. https:
//classic.mceliece.org/nist/vsntskem-20180629.pdf.

Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of information set
decoding, 2013. https://eprint.iacr.org/2013/162.

Evgueni A. Krouk. Decoding complexity bound for linear block codes. Problemy
Peredachi Informatsii, 25:103-107, 1989. http://www.mathnet.ru/eng/ppi665.

Pil Joong Lee and Ernest F. Brickell. An observation on the security of McEliece’s
public-key cryptosystem. In Christoph G. Gilinther, editor, Advances in Cryptology—
FUROCRYPT ’88, Workshop on the Theory and Application of of Cryptographic Tech-
niques, Davos, Switzerland, May 25-27, 1988, Proceedings, volume 330 of Lecture Notes
i Computer Science, pages 275-280. Springer, 1988. https://doi.org/10.1007/
3-540-45961-8_25.

Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large error-
correcting codes. I[EEE Trans. Information Theory, 34(5):1354-1359, 1988. https:
//doi.org/10.1109/18.21270.

Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear
codes in O(209%4") In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology—ASIACRYPT 2011—17th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Seoul, South Korea, December }-8,
2011. Proceedings, volume 7073 of Lecture Notes in Computer Science, pages 107-124.
Springer, 2011. https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/
paper/decoding.pdf.

Alexander May and Ilya Ozerov. On computing nearest neighbors with applications
to decoding of binary linear codes. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology—EUROCRYPT 2015—34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science,
pages 203-228. Springer, 2015. https://www.cits.ruhr-uni-bochum.de/imperia/
md/content/may/paper/codes.pdf.

Rafael Misoczki and Paulo S. L. M. Barreto. Compact McEliece keys from Goppa codes.
In Michael J. Jacobson Jr., Vincent Rijmen, and Rei Safavi-Naini, editors, Selected Areas
i Cryptography, volume 5867 of Lecture Notes in Computer Science, pages 376-392.
Springer, 2009. https://eprint.iacr.org/2009/187.

20

https://eprint.iacr.org/2009/414
https://eprint.iacr.org/2009/414
https://classic.mceliece.org/nist/vsntskem-20180629.pdf
https://classic.mceliece.org/nist/vsntskem-20180629.pdf
https://eprint.iacr.org/2013/162
http://www.mathnet.ru/eng/ppi665
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1109/18.21270
https://doi.org/10.1109/18.21270
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/decoding.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/decoding.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/codes.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/codes.pdf
https://eprint.iacr.org/2009/187

[38]

[39]

[40]

[48]

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto.
MDPC-McEliece: New McEliece variants from moderate density parity-check codes. In
Proceedings of the 2013 IEEFE International Symposium on Information Theory, Istan-
bul, Turkey, July 7-12, 2013, pages 2069-2073. IEEE, 2013. https://eprint.iacr.
org/2012/4009.

National Institute for Standards and Technology (NIST). Digital signature standard
(DSS) FIPS 1864, 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
186-4 . pdf.

Mattus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and Vashek Matyas. The return
of Coppersmith’s attack: Practical factorization of widely used RSA moduli. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 1631-1648. ACM,
2017. https://crocs.fi.muni.cz/public/papers/rsa_ccsl7.

Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory, 15(2):159-166, 1986.

Edoardo Persichetti. Compact McEliece keys based on quasi-dyadic Srivastava codes. J.
Mathematical Cryptology, 6(2):149-169, 2012. https://eprint.iacr.org/2011/179.

Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, I'T-8:55-S9, 1962.

Nicolas Sendrier. Finding the permutation between equivalent linear codes: The support
splitting algorithm. IEEE Trans. Information Theory, 46(4):1193-1203, 2000. https:
//doi.org/10.1109/18.850662.

Victor Shoup. A proposal for an ISO standard for public key encryption, 2001. https:
//eprint.iacr.org/2001/112.

Jacques Stern. A method for finding codewords of small weight. In Gérard D. Cohen
and Jacques Wolfmann, editors, Coding Theory and Applications, 3rd International
Colloquium, Toulon, France, November 2—4, 1988, Proceedings, volume 388 of Lecture
Notes in Computer Science, pages 106-113. Springer, 1988. https://doi.org/10.
1007/BFb0019850.

Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a
sub-linear error weight. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography—7th
International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Pro-
ceedings, volume 9606 of Lecture Notes in Computer Science, pages 144-161. Springer,
2016. https://hal.inria.fr/hal-01244886v1/document.

Johan van Tilburg. On the McEliece public-key cryptosystem. In Shafi Goldwasser,
editor, Advances in Cryptology—CRYPTO 88, 8th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 21-25, 1988, Proceedings, volume

21

https://eprint.iacr.org/2012/409
https://eprint.iacr.org/2012/409
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://crocs.fi.muni.cz/public/papers/rsa_ccs17
https://eprint.iacr.org/2011/179
https://doi.org/10.1109/18.850662
https://doi.org/10.1109/18.850662
https://eprint.iacr.org/2001/112
https://eprint.iacr.org/2001/112
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/BFb0019850
https://hal.inria.fr/hal-01244886v1/document

403 of Lecture Notes in Computer Science, pages 119-131. Springer, 1988. https:
//doi.org/10.1007/0-387-34799-2_10.

[49] Johan van Tilburg. Security-analysis of a class of cryptosystems based on linear error-
correcting codes. PhD thesis, Technische Universiteit Eindhoven, 1994.

22

https://doi.org/10.1007/0-387-34799-2_10
https://doi.org/10.1007/0-387-34799-2_10

	One-wayness
	Better efficiency for the same one-wayness
	Systematic-form public keys
	Syndromes as ciphertexts
	Semi-systematic form

	Indistinguishability against chosen-ciphertext attacks
	Generation of random objects
	Random objects in Classic McEliece
	Compression of private keys
	Field ordering
	Irreducible polynomial
	Fixed-weight vector in encapsulation

	Selected parameter sets
	Maximizing security within 1MB
	The robustness of maximizing security
	Maximizing security within other size constraints
	Possibilities for further parameter sets

	Advantages and limitations
	References

